@article{SalamaKouDawoudetal., author = {Salama, Amgad and Kou, Jisheng and Dawoud, Belal and Rady, Mohamed and El Morshedy, Salah}, title = {Investigation of the self-propulsion of a wetting/nonwetting ganglion in tapered capillaries with arbitrary viscosity and density contrasts}, series = {Colloids and Surfaces A: Physicochemical and Engineering Aspects}, volume = {664}, journal = {Colloids and Surfaces A: Physicochemical and Engineering Aspects}, publisher = {Elsevier}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2023.131151}, abstract = {The movement of a meniscus inside a capillary tube has been extensively studied in the context of displacing one fluid with another immiscible one. This phenomenon exists in many applications including pharmaceutical, oil production, filtration and separation processes, and others. When one of the phases is entrapped inside a capillary tube, it forms what is called a ganglion with two menisci between the two fluids. In a straight uniform capillary tube, a stagnant entrapped ganglion is symmetric. The situation is different if the capillary tube is tapered in which case the two menisci assume different curvatures. Such inhomogeneity of the capillary pressure self-propels the ganglion to move. The fate of the ganglion inside the tapered tube depends on whether it is wetting or nonwetting to the tube wall. That is, after the initial movement, a wetting ganglion accelerates towards the tapered end of the tube while a nonwetting one decelerates towards the wider end before reaching a terminal configuration. Such fates are linked to the variations of the capillary pressure, which continuously increases for a wetting ganglion and decreases for the nonwetting one. In this work, a generalized model is developed that not only describes capillary-driven dynamics over a wide range of viscosity and density contrasts but also pressure-driven scenarios with/without gravity. The model, however, neglects the inertial effect of the two fluids on account of the fact that it is confined to the very early time of the movement process. A first-order nonlinear ordinary differential equation is developed that describes the dynamic behavior of both the wetting and nonwetting ganglions. A fourth-order Runge-Kutta algorithm is developed to solve the model equations. Furthermore, a computational fluid dynamics (CFD) analysis was used to provide a comparison and verification framework.}, language = {en} } @article{ReindlMeisnerHierl, author = {Reindl, Thomas and Meisner, Dennis and Hierl, Stefan}, title = {Benchmarking of plastic-based Additive Manufacturing Processes}, series = {RTe Journal}, journal = {RTe Journal}, abstract = {Additive Manufacturing (AM) is a future-oriented manufacturing technology that is experiencing an enormous boom in the times of Industry 4.0. As a result, various AM technologies and printer models from different manufacturers are entering the market over a short time span. With the advancing establishment of this manufacturing technology for series applications, the expectations and requirements of the fabricated components are also increasing. However, a major challenge is the application-specific selection of the most suitable AM process due to a lack of comparable data. Furthermore, there needs to be more know-how regarding the geometrical and mechanical characteristics of AM parts. This paper addresses this problem by comparing the three most common plasticbased AM processes in the areas of surface quality, dimensional accuracy, and mechanical properties. Roughness measurements, evaluation of a benchmark artifact, tensile tests, and load increase tests are carried out. Based on the results, the individual possibilities and limitations of the compared AM processes can be detected.}, language = {en} } @article{LehrerKapsLepeniesetal., author = {Lehrer, Tobias and Kaps, Arne and Lepenies, Ingolf and Duddeck, Fabian and Wagner, Marcus}, title = {Classification and regression models for drawability assessment in deep drawing}, series = {International Journal of Material Forming}, journal = {International Journal of Material Forming}, number = {Noch nicht erschienen}, publisher = {Springer}, language = {en} } @article{BartschBurgerGradetal., author = {Bartsch, Alexander and Burger, Moritz and Grad, Marius and Esper, Lukas and Schultheiß, Ulrich and Noster, Ulf and Schratzenstaller, Thomas}, title = {Enhancement of laser cut edge quality of ultra-thin titanium grade 2 sheets by applying an in-process approach using modulated Yb:YAG continuous wave fiber laser}, series = {Discover Mechanical Engineering}, volume = {2}, journal = {Discover Mechanical Engineering}, number = {10}, publisher = {Springer}, doi = {10.1007/s44245-023-00018-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-65647}, pages = {9}, abstract = {Titanium is used in many areas due to its excellent mechanical, biological and corrosion-resistant properties. Implants often have thin and filigree structures, providing an ideal application for fine cutting with laser. In the literature, the main focus is primarily on investigating and optimizing the parameters for titanium sheets with thicknesses greater than 1 mm. Hence, in this study, the basic manufacturing parameters of laser power, cutting speed and laser pulse of a 200 W modulated fiber laser are investigated for 0.15 mm thick grade 2 titanium sheets. A reproducible, continuous cut could be achieved using 90 W laser-power and 2 mm/s cutting-speed. Pulse pause variations between 85 and 335 μs in 50 μs steps and a fixed pulse width of 50 μs show that a minimum kerf width of 23.4 μm, as well as a minimum cut edge roughness Rz of 3.59 μm, is achieved at the lowest pulse pause duration. An increase in roughness towards the laser exit side, independent of the laser pulse pause duration, was found and discussed. The results provide initial process parameters for cutting thin titanium sheets and thus provide the basis for further investigations, such as the influence of cutting gas pressure and composition on the cut edge.}, language = {en} } @article{GalkaWappler, author = {Galka, Stefan and Wappler, Mona}, title = {Integration of cash flow management and further aspects of the supply chain management in production system design}, series = {IFAC-PapersOnLine}, volume = {56}, journal = {IFAC-PapersOnLine}, number = {2}, publisher = {IFAC / Elsevier}, doi = {10.1016/j.ifacol.2023.10.1687}, pages = {947 -- 952}, abstract = {One major goal of production system design is to decide on space requirements in the plant. In this phase, detailed information about the supply chain network (e.g. which suppliers deliver which parts) is often unavailable. Nevertheless, typical decisions in supply chain management, like the definition of replenishment processes and quantities or make-or-buy decisions, impact space requirements and the capital investment in raw materials. Therefore, it should be considered in factory and production planning. This research article proposes a simulation approach for a production simulation in which raw material replenishment is integrated to evaluate the capital investment and space requirements for raw materials.}, language = {en} } @article{LehrerKapsLepeniesetal., author = {Lehrer, Tobias and Kaps, Arne and Lepenies, Ingolf and Duddeck, Fabian and Wagner, Marcus}, title = {2S-ML: A simulation-based classification and regression approach for drawability assessment in deep drawing}, series = {International Journal of Material Forming}, volume = {16}, journal = {International Journal of Material Forming}, publisher = {Springer}, doi = {10.1007/s12289-023-01770-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-64664}, pages = {1 -- 17}, abstract = {New structural sheet metal parts are developed in an iterative, time-consuming manner. To improve the reproducibility and speed up the iterative drawability assessment, we propose a novel low-dimensional multi-fidelity inspired machine learning architecture. The approach utilizes the results of low-fidelity and high-fidelity finite element deep drawing simulation schemes. It hereby relies not only on parameters, but also on additional features to improve the generalization ability and applicability of the drawability assessment compared to classical approaches. Using the machine learning approach on a generated data set for a wide range of different cross-die drawing configurations, a classifier is trained to distinguish between drawable and non-drawable setups. Furthermore, two regression models, one for drawable and one for non-drawable designs are developed that rank designs by drawability. At instantaneous evaluation time, classification scores of high accuracy as well as regression scores of high quality for both regressors are achieved. The presented models can substitute low-fidelity finite element models due to their low evaluation times while at the same time, their predictive quality is close to high-fidelity models. This approach may enable fast and efficient assessments of designs in early development phases at the accuracy of a later design phase in the future.}, language = {en} } @article{GebhardtSchlampEhrlichetal., author = {Gebhardt, Jakob and Schlamp, M. and Ehrlich, Ingo and Hiermaier, Stefan}, title = {Low-velocity impact behavior of elliptic curved composite structures}, series = {International Journal of Impact Engineering}, volume = {180}, journal = {International Journal of Impact Engineering}, publisher = {Elsevier}, doi = {10.1016/j.ijimpeng.2023.104663}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-59304}, pages = {8}, abstract = {Although many composite structures are inconsistently curved, such as the leading edges of aircraft wings, the variety of research in impact engineering is almost limited to the impact performance of plates or cylindrically curved specimens. It is not known whether the findings obtained from standardized tests can be transferred to curved structures or which adaptions are required. Therefore, a deeper understanding of the deformation and damage behavior of inconsistently curved structures is essential to transfer the observed impact behavior of flat specimens to general curved structures and therefore to utilize the full lightweight potential of a load-specific design. An accurate description of the procedure as well as the results of the experimental and numerical study of the low-velocity impact behavior of differently single-curved elliptic specimens is presented. To close the research gap of the impact behavior of geometries with curvatures between the plates and simplified leading edges, novel specimens geometries have been derived from established impact test standards. Glassfiber-reinforced specimens are subjected to an instrumented impact test at constant impact energy. This is numerically investigated by a stacked-layer model, which used cohesive zone modeling to enable the simulation of matrix cracking, fiber fracture and delamination. The resulting projected damage areas, as well as the force and deflection histories, were evaluated and section cuts were examined to discuss the damage morphology, formation and propagation process. Significant effects on maximum deflection, compliance and dynamic behavior on the size and morphology of damage were found.}, language = {en} } @article{NonnKissPezeshkianetal., author = {Nonn, Aida and Kiss, B{\´a}lint and Pezeshkian, Weria and Tancogne-Dejean, Thomas and Cerrone, Albert and Kellermayer, Miklos and Bai, Yuanli and Li, Wei and Wierzbicki, Tomasz}, title = {Inferring mechanical properties of the SARS-CoV-2 virus particle with nano-indentation tests and numerical simulations}, series = {Journal of the mechanical behavior of biomedical materials}, volume = {148}, journal = {Journal of the mechanical behavior of biomedical materials}, publisher = {Elsevier}, issn = {1751-6161}, doi = {10.1016/j.jmbbm.2023.106153}, abstract = {The pandemic caused by the SARS-CoV-2 virus has claimed more than 6.5 million lives worldwide. This global challenge has led to accelerated development of highly effective vaccines tied to their ability to elicit a sustained immune response. While numerous studies have focused primarily on the spike (S) protein, less is known about the interior of the virus. Here we propose a methodology that combines several experimental and simulation techniques to elucidate the internal structure and mechanical properties of the SARS-CoV-2 virus. The mechanical response of the virus was analyzed by nanoindentation tests using a novel flat indenter and evaluated in comparison to a conventional sharp tip indentation. The elastic properties of the viral membrane were estimated by analytical solutions, molecular dynamics (MD) simulations on a membrane patch and by a 3D Finite Element (FE)-beam model of the virion's spike protein and membrane molecular structure. The FE-based inverse engineering approach provided a reasonable reproduction of the mechanical response of the virus from the sharp tip indentation and was successfully verified against the flat tip indentation results. The elastic modulus of the viral membrane was estimated in the range of 7-20 MPa. MD simulations showed that the presence of proteins significantly reduces the fracture strength of the membrane patch. However, FE simulations revealed an overall high fracture strength of the virus, with a mechanical behavior similar to the highly ductile behavior of engineering metallic materials. The failure mechanics of the membrane during sharp tip indentation includes progressive damage combined with localized collapse of the membrane due to severe bending. Furthermore, the results support the hypothesis of a close association of the long membrane proteins (M) with membrane-bound hexagonally packed ribonucleoproteins (RNPs). Beyond improved understanding of coronavirus structure, the present findings offer a knowledge base for the development of novel prevention and treatment methods that are independent of the immune system.}, language = {en} } @article{ThumannBuchnerMarburgetal., author = {Thumann, Philipp and Buchner, Stefan and Marburg, Steffen and Wagner, Marcus}, title = {A comparative study of Glinka and Neuber approaches for fatigue strength assessment on 42CrMoS4-QT specimens}, series = {Strain}, volume = {2023}, journal = {Strain}, number = {e12470}, publisher = {Wiley}, issn = {1475-1305}, doi = {10.1111/str.12470}, pages = {21}, abstract = {In fatigue strength assessment, the methods based on ideal elastic stresses according to Basquin and the less established method based on elastic-plastic stress quantities according to Manson, Coffin and Morrow are applied. The former calculates loads using linear-elastic stresses, the latter requires elasticplastic evaluation parameters, such as stresses and strains. These can be determined by finite element analysis (FEA) with a linear-elastic constitutive law, and subsequent conversion to elastic-plastic loads, using the macro support formula by Neuber. In this contribution, an alternative approach to approximate elastic-plastic parameters proposed by Glinka is compared to the the strain-life method using Neuber's formula, as well as the stress-life method of Basquin. Several component tests on 42CrMoS4-QT specimens are investigated. To determine the input data for the fatigue strength evaluations, the entire test setup is computed by FEA. The nodal displacements from these validated full-model simulations are used as boundary conditions for a submodel simulation of a notch, whose results serve as input for the fatigue strength assessments. It is shown that all approaches provide a reliable assessment of components. Our key result is that the strain-life method using the concept by Glinka for notch stress computation, yields improved results in fatigue strength assessments.}, language = {en} } @article{WiesentStockerNonn, author = {Wiesent, Lisa and Stocker, Felix and Nonn, Aida}, title = {Investigating the influence of geometric parameters on the deformation of laser powder bed fused stents using low-fidelity thermo-mechanical analysis}, series = {Materialia}, volume = {28}, journal = {Materialia}, publisher = {Elsevier}, doi = {10.1016/j.mtla.2023.101774}, abstract = {Maintaining dimensional accuracy is a major challenge of laser powder bed fusion (L-PBF) preventing its application for more complex and filigree L-PBF structures in industrial practice. Previous studies have shown that residual stresses and distortion of benchmark L-PBF components may be predicted by sequential thermo-mechanical analyses. However, the reliability of these analyses for more complex structures must be critically questioned, as comprehensive validation and sensitivity analyses are scarce. In this paper, we present a calibrated and validated low-fidelity sequential thermo-mechanical finite element analysis (FEA) of a tubular L-PBF lattice structure, i.e., an aortic stent, where pronounced local deformation is expected. As a first step, the finite element model was extensively calibrated using experimental data to ensure reproducibility of the simulation results. Thereupon, geometric features critical to the distortion of L-PBF lattice structures and measures to compensate for the distortion, such as inversion of the distorted L-PBF structure, were investigated. It was found that the distortion of the L-PBF lattice structures can be reduced, but not completely prevented, by increasing the strut angles, increasing the strut thickness, and decreasing the transition radius in the area of merging struts. FEA-based inversion of the numerically predicted deformed structure minimized distortion, resulting in the L-PBF aortic stent approximating the intended CAD geometry even with a small strut thickness. This work shows that low-fidelity sequential thermo-mechanical FEA can be used not only for the analysis and deformation compensation of reference structures, but also for the analysis of more complex filigree structures with pronounced local deformation.}, language = {en} } @article{KloiberSchultheissSoteloetal., author = {Kloiber, Jessica and Schultheiß, Ulrich and Sotelo, Lamborghini and Sarau, George and Christiansen, Silke and Gavras, Sarkis and Hort, Norbert and Hornberger, Helga}, title = {Corrosion behaviour of electropolished magnesium materials}, series = {Materials Today Communications}, journal = {Materials Today Communications}, edition = {Journal Pre-proof}, publisher = {Elsevier}, doi = {10.1016/j.mtcomm.2023.107983}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-68254}, abstract = {Although magnesium and its alloys are promising candidates as biodegradable implant materials, the tendency for localized corrosion mechanism in physiological environment limit their biomedical application. Electropolishing is an attractive strategy for improving the corrosion behaviour of metals, but it is still largely unexplored in magnesium materials. In this study, the characterization of electropolished surfaces of AM50 and pure magnesium was performed, focussing on their in vitro degradation behaviour in cell medium. Corrosion rates were evaluated using potentiodynamic polarisation. The surface morphology before and after the onset of corrosion was investigated by scanning electron microscopy and confocal laser scanning microscopy. The presented electropolishing process led to improved surface performances, observable by significantly lower corrosion rates (0.08 mm·year-1 in Dulbecco's modified Eagle's medium), lower arithmetical mean height (0.05 µm), lower water contact angle (25-35°) and lower micro hardness (35-50 HV 0.1) compared to mechanically and chemically treated surfaces. MgO/Mg(OH)2 could be detected on electropolished surfaces. The localized corrosion mode could be reduced, but not entirely prevented. Electropolishing shows great potential as post-treatment of magnesium-based components, but detailed tests of the long-term corrosion behaviour are an important area of future research.}, language = {en} } @article{KuettnerRathsFischeretal., author = {Kuettner, Andreas and Raths, Max and Fischer, Samuel and Laumer, Tobias}, title = {Heat staking of polymer parts generated by fused layer modeling}, series = {The International Journal of Advanced Manufacturing Technology}, journal = {The International Journal of Advanced Manufacturing Technology}, publisher = {Springer Nature}, doi = {10.1007/s00170-023-11850-y}, abstract = {Heat staking is a joining technology by which thermoplastic pins are formed by force and temperature to create a form- and force-fitting connection between components. This paper examines the characteristics of 3D printed pins in comparison to conventionally turned pins for heat staking applications. The 3D printed pins are created using fused layer modeling, with variations in horizontal and vertical building directions, as well as different layer thicknesses. The study investigates the impact of significant factors on the heat staking process, including the forming force and temperature. Tensile tests, micrographs, and micro-CT measurements were conducted to determine the properties of the heat-staked joints. Additionally, a stage plan was developed to enhance the understanding of the forming process of both printed and conventionally turned materials. The findings suggest that, under specific process parameters, 3D printed pins exhibit comparable strength to conventionally manufactured pins. The research also demonstrates that the anisotropy resulting from the layer-by-layer construction of the pins significantly influences the strength of the connection. Furthermore, the study reveals that 3D printed pins exhibit good forming accuracy during the heat staking process, and the cavities formed during printing can be substantially reduced.}, language = {en} } @article{KastenmeierSieglEhrlichetal., author = {Kastenmeier, Andreas and Siegl, Marco and Ehrlich, Ingo and Gebbeken, Norbert}, title = {Review of elasto-static models for three-dimensional analysis of thick-walled anisotropic tubes}, series = {Journal of Composite Materials}, journal = {Journal of Composite Materials}, publisher = {Sage}, doi = {10.1177/00219983231215863}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-67521}, abstract = {Most shell or beam models of anisotropic tubes under bending have no validity for thick-walled structures. As a result, the need to develop three-dimensional formulations which allow a change in the stress, strain and displacement distributions across the radial component arises. Basic formulations on three-dimensional anisotropic elasticity were made either stressor displacement-based by Lekhnitskii or Stroh on plates. Lekhnitskii also was the first to expand these analytical formulations to tubes under various loading conditions. This paper presents a review of the stress and strain analysis of tube models using three-dimensional anisotropic elasticity. The focus lies on layered structures, like fiber-reinforced plastics, under various bending loads, although the basic formulations and models regarding axisymmetric loads are briefly discussed. One section is also dedicated to the determination of an equivalent bending stiffness of tubes.}, language = {en} } @article{RillSchaefferSchuderer, author = {Rill, Georg and Schaeffer, Thomas and Schuderer, Matthias}, title = {LuGre or not LuGre}, series = {Multibody System Dynamics}, journal = {Multibody System Dynamics}, publisher = {Springer}, doi = {10.1007/s11044-023-09909-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-65653}, pages = {28}, abstract = {The LuGre model is widely used in the analysis and control of systems with friction. Recently, it has even been made available in the commercial multibody dynamics simulation software system Adams. However, the LuGre model exhibits well-known drawbacks like too low and force rate-dependent break-away forces, drift problems during sticking periods, and significant differences in non-stationary situations between the pre-defined friction law and the one produced by the LuGre model. In the present literature, these problems are supposed to come from the model dynamics or its nonlinear nature. However, most of these drawbacks are not simple side effects of a dynamic friction model but are caused in the LuGre approach, as shown here, by a too simple and inconsistent model of the bristle dynamics. Standard examples and a more practical application demonstrate that the LuGre model is not a "what you see is what you get" approach. A dynamic friction model with accurate bristle dynamics and consistent friction force is set up here. It provides insight into the physical basis of the LuGre model dynamics. However, it results in a nonlinear and implicit differential equation, whose solution will not be easy because of the ambiguity of the friction characteristics. The standard workaround, a static model based on simple regularized characteristics, produces reliable and generally satisfactory results but definitely cannot maintain a stick. The paper presents a second-order dynamic friction model, which may serve as an alternative. It can maintain a stick and produces realistic and reliable results.}, language = {en} }