@inproceedings{Schubert, author = {Schubert, Martin J. W.}, title = {Mixed-Signal Event-Driven Simulation of a Phase-Locked Loop}, series = {IEEE/VIUF International Workshops on Behavioral Modeling and Simulation (BMAS'99), October 4-6 1999, Orlando, Florida, USA}, booktitle = {IEEE/VIUF International Workshops on Behavioral Modeling and Simulation (BMAS'99), October 4-6 1999, Orlando, Florida, USA}, abstract = {The mixed-signal event-driven (MixED) simulationalgorithm using standard VHDL is capable of modelinga number of analog and mixed-signal problems in digital circuits, e.g. RCL networks representing pads or wires, charge pumps, dynamic logic, voltage-controlledoscillators, phase-locked loops, etc. Important featuresare single-kernel simulation as well as rapid A/D andD/A interfacing. This paper demonstrates the simulation of a phase-locked loop (PLL), which is one of the most interesting applications of the MixED method. Many digital designs contain a PLL as only mixed-signal building block. The MixED method allows to simulate such designs with standard VHDL.}, language = {en} } @inproceedings{Schubert, author = {Schubert, Martin J. W.}, title = {VHDL Based Simulation of a Sigma-Delta A/D Converter}, series = {EEE/ACM International Workshop on Behavioral Modeling and Simulation (BMAS2000), October 19-20 2000, Orlando, Florida, USA, prodeedings}, booktitle = {EEE/ACM International Workshop on Behavioral Modeling and Simulation (BMAS2000), October 19-20 2000, Orlando, Florida, USA, prodeedings}, doi = {10.1109/BMAS.2000.888367}, abstract = {The VHDL based mixed-signal event-driven (MixED) simulation method is employed to simulate a sigma-delta modulator for A/D conversion. Results are verified by experimental data and comparison to PSpice-AD simulations.}, language = {en} } @inproceedings{Schubert, author = {Schubert, Martin J. W.}, title = {VHDL Based Simulation of a Delta-Sigma A/D Converter Clocked with a Phase-Locked Loop}, series = {Design, Automation and Test in Europe, DATE'2001 Conference, March 13-16 2001, Munich}, booktitle = {Design, Automation and Test in Europe, DATE'2001 Conference, March 13-16 2001, Munich}, abstract = {The VHDL based mixed-signal event-driven (MixED) simulation method is employed to simulate a comprehensive system containing a number of mixed-signal building blocks: an analog waveform generator, a phase-locked loop and two ∆Σ modulators for A/D conversion.}, language = {en} } @article{Schubert, author = {Schubert, Martin J. W.}, title = {An Analog Node Model for VHDL Based Simulation of RF Integrated Circuits}, series = {IEEE Transactions on Circuits and Systems I, Regular Papers}, volume = {56}, journal = {IEEE Transactions on Circuits and Systems I, Regular Papers}, number = {12}, doi = {10.1109/TCSI.2009.2027799}, pages = {2717 -- 2727}, abstract = {This paper describes a very-high-speed integrated-circuit hardware description language (VHDL)-based analog-node model, an associated driver component for the mixed-signal event-driven (MixED) simulation technique, and some primitive device models applied to radio-frequency integrated circuits. With the presented MixED method, analog circuits are modeled as a composition of controlled sources. Unlike other VHDL-based analog simulation methods, these MixED sources compute not only a real number representing an output voltage but also an output impedance. This allows the outputs of several MiXED sources to be connected in order to drive the same node signal n . The voltage of this record-type signal is automatically computed at its element n . u by resolution functions in compliance with Kirchhoff's current law. The data structure of the node signal n , its self-defined resolution functions, and an associated driver component are presented and discussed to meet different simulation requirements, such as speed, versatility, current accuracy, and adaptive time stepping. Several examples demonstrate how to behaviorally model mixed-signal components with this method with an emphasis on the simulation of a heterodyne receiver. Simulation speeds are compared to VHDL-AMS tools.}, language = {en} } @article{Schubert, author = {Schubert, Martin J. W.}, title = {70V-to-5V Differential CMOS Input Interface}, series = {IEE Electronic Letters}, volume = {30}, journal = {IEE Electronic Letters}, number = {4}, doi = {10.1049/el:19940235}, pages = {296 -- 297}, language = {en} } @misc{Schubert, author = {Schubert, Martin J. W.}, title = {Verfahren zur Simulation von Netzwerken auf einer ereignisgesteuerten Zeitachse mittels verteilter, lokaler Iteration}, language = {de} } @inproceedings{Schubert, author = {Schubert, Martin J. W.}, title = {Mixed Signal Modeling in VHDL by Distributed Local Iteration}, series = {VHDL Form, Toledo, Spain, April 20-24, 1997}, booktitle = {VHDL Form, Toledo, Spain, April 20-24, 1997}, language = {en} } @inproceedings{Schubert, author = {Schubert, Martin J. W.}, title = {Mixed Analog-Digital Signal Modeling Using Event-Driven VHDL}, series = {X Brazilian Symposium on Integrated Circuit Design (SBCCI'97), August 25-27 1997, Porto Alegre, Brazil}, booktitle = {X Brazilian Symposium on Integrated Circuit Design (SBCCI'97), August 25-27 1997, Porto Alegre, Brazil}, pages = {77 -- 86}, abstract = {A method for solving networks containing generic analog components such as resistors, capacitors and inductors onan event driven time axis using digital VHDL is presented. The components are modeled as complex state machines communicating with their neighbors using INOUT type ports. The method takes advantage of simulation deltas to iterate without simulation-time consumption. A limited range of implicit equations can be solved this way.}, language = {en} } @misc{Schubert, author = {Schubert, Martin J. W.}, title = {Feedback-nach-Feedforward-Transformation zur Verhaltensmodellierung r{\"u}ckgekoppelter Verst{\"a}rker}, language = {de} } @inproceedings{Schubert, author = {Schubert, Martin J. W.}, title = {Operational Amplifier Modeling Using Event-Driven VHDL}, series = {IEEE/VIUF International Workshops on Behavioral Modeling and Simulation (BMAS'97), October 20/21 1997, Washington D.C., USA}, booktitle = {IEEE/VIUF International Workshops on Behavioral Modeling and Simulation (BMAS'97), October 20/21 1997, Washington D.C., USA}, abstract = {A method to model high-gain feedback-loop analog amplifiers on an event driven timeaxis is presented. The demonstrator is coded in digital VHDL'93. In the event-driven scheme any node in the network must converge „on its own" based on the information delivered from its neighbors, as no overall matrix is set up. For this reason signalloops with a loop gain larger than one are typically unstable. This communication presents a numerically stable generic model for high gain amplifiers with a userdefined feedback network. Non-ideal effects like offset or finite gain can be taken into account.}, language = {en} } @inproceedings{BartschSchubert, author = {Bartsch, Ernst and Schubert, Martin J. W.}, title = {Mixed Analog-Digital Circuit Modeling Using Event-Driven VHDL}, series = {IEEE/VIUF International Workshops on Behavioral Modeling and Simulation (BMAS'97), Ocotober 20/21 1997, Washington D.C., USA}, booktitle = {IEEE/VIUF International Workshops on Behavioral Modeling and Simulation (BMAS'97), Ocotober 20/21 1997, Washington D.C., USA}, abstract = {The mixed-signal event-driven (MixED) method developed to simulate small portions of analog circuitry within a digital environment is demonstrated in a mixed signal application. The MixED models using concurrent iteration to account for analog nodes were coded and run in standard VHDL'93. Networks containing linear components such as sources, resistors, capacitors, inductors and operational amplifiers are presented. The possibility to manipulate resistors during runtime is used to simulate switches.}, language = {en} } @inproceedings{SchneiderHaumerKoeckeis, author = {Schneider, Michael and Haumer, Anton and K{\"o}ckeis, Rupert}, title = {Modelling and Simulation of the passive Structure of a 5-Axis-Milling Machine with rigid and flexible bodies for evaluating the static and dynamic behaviour}, series = {Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017}, booktitle = {Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017}, publisher = {Link{\"o}ping University Electronic Press}, doi = {10.3384/ecp17132389}, pages = {389 -- 395}, abstract = {Most of the mechanical simulations for industrial usage are done by finite element (FE-) analysis. Milling machines are mechatronic systems, combining electrical, mechanical and control components for machining certain materials. Modelica provides a powerful and strong tool to simulate different physical ares in one model. For this usage a mechanical model of a 5-Axis-Milling Machine is implemented with rigid and flexible bodies. Specific attention will be paid to which components can be modelled rigid without significant deviation in accordance to the real behaviour of the machine. Two classes of implementing flexible bodies in multi body systems are given by the flexible bodies Library, advantages and disadvantages of both classes will be evaluated. At the end a comparision of the static and dynamic behaviour of the passive structure of the model in contrast to a FE-analysis is given.}, language = {en} } @inproceedings{SchlalWickeZahneretal., author = {Schlal, Sebastian and Wicke, Markus and Zahner, Thomas and Lang, Kurt-J{\"u}rgen}, title = {Evaluation of thermal solder joint quality and thermal performance of PCBs by using standard measurement equipment}, series = {20th International Workshop on Thermal Investigations of ICs and Systems, 24-26 Sept. 2014, Greenwich, UK}, booktitle = {20th International Workshop on Thermal Investigations of ICs and Systems, 24-26 Sept. 2014, Greenwich, UK}, publisher = {IEEE}, doi = {10.1109/THERMINIC.2014.6972522}, pages = {1 -- 5}, abstract = {By using more powerful LEDs a good thermal management is becoming more and more important. Here usually the thermal interconnects have to be in focus. Therefore a simple and rapid measurement method for the thermal check of the solder joint in a high volume production is necessary. A standard thermal resistance measurement is very time consuming due to the calibration of each device. By using thermal characterized reference devices it is possible to skip the time consuming part. Furthermore, a simple methodology for evaluating the thermal performance of the various metal core PCB (MCPCB) materials and construction is required during development. In this paper we will present how we successfully demonstrated that this new method offers an opportunity to determine the thermal performance of a high power QFN LED on different types of isolated metal substrate (IMS) and with a standard SMU [1] (source measurement units).}, language = {en} } @article{StadlerHofmannMotschmannetal., author = {Stadler, Dominik and Hofmann, Matthias J. and Motschmann, Hubert and Shamonin (Chamonine), Mikhail}, title = {Automated system for measuring the surface dilational modulus of liquid-air interfaces}, series = {Measurement Science and Technology}, volume = {27}, journal = {Measurement Science and Technology}, number = {6}, publisher = {IOP PUBLISHING}, doi = {10.1088/0957-0233/27/6/065301}, abstract = {The surface dilational modulus is a crucial parameter for describing the rheological properties of aqueous surfactant solutions. These properties are important for many technological processes. The present paper describes a fully automated instrument based on the oscillating bubble technique. It works in the frequency range from 1 Hz to 500 Hz, where surfactant exchange dynamics governs the relaxation process. The originality of instrument design is the consistent combination of modern measurement technologies with advanced imaging and signal processing algorithms. Key steps on the way to reliable and precise measurements are the excitation of harmonic oscillation of the bubble, phase sensitive evaluation of the pressure response, adjustment and maintenance of the bubble shape to half sphere geometry for compensation of thermal drifts, contour tracing of the bubbles video images, removal of noise and artefacts within the image for improving the reliability of the measurement, and, in particular, a complex trigger scheme for the measurement of the oscillation amplitude, which may vary with frequency as a result of resonances. The corresponding automation and programming tasks are described in detail. Various programming strategies, such as the use of MATLAB (R) software and native C++ code are discussed. An advance in the measurement technique is demonstrated by a fully automated measurement. The instrument has the potential to mature into a standard technique in the fields of colloid and interface chemistry and provides a significant extension of the frequency range to established competing techniques and state-of-the-art devices based on the same measurement principle.}, language = {en} } @article{SchoepeHaenninenNiemetz, author = {Schoepe, Wilfried and H{\"a}nninen, Risto and Niemetz, Michael}, title = {Breakdown of Potential Flow to Turbulence Around a Sphere Oscillating in Superfluid 4He Above the Critical Velocity}, series = {Journal of low temperature physics}, volume = {178}, journal = {Journal of low temperature physics}, publisher = {Springer Nature}, doi = {10.1007/s10909-014-1265-7}, pages = {383 -- 391}, abstract = {The onset of turbulent flow around an oscillating sphere in superfluid 4He is known to occur at a critical velocity where is the circulation quantum and is the oscillation frequency. But it is also well known that initially in a first up-sweep of the oscillation amplitude, can be considerably exceeded before the transition occurs, thus leading to a strong hysteresis in the velocity sweeps. The velocity amplitude where the transition finally occurs is related to the density of the remanent vortices in the superfluid. Moreover, at temperatures below ca. 0.5 K and in a small interval of velocity amplitudes between and a velocity that is about 2 \% larger, the flow pattern is found to be unstable, switching intermittently between potential flow and turbulence. From time series recorded at constant temperature and driving force, the distribution of the excess velocities is obtained and from that the failure rate. Below 0.1 K we also can determine the distribution of the lifetimes of the phases of potential flow. Finally, the frequency dependence of these results is discussed.}, language = {en} } @article{MonkmanSindersbergerDiermeieretal., author = {Monkman, Gareth J. and Sindersberger, Dirk and Diermeier, Andreas and Prem, Nina}, title = {The magnetoactive electret}, series = {smart materials and structures}, volume = {26}, journal = {smart materials and structures}, number = {7}, publisher = {IOP Publishing}, doi = {10.1088/1361-665X/aa738f}, abstract = {A magnet which adheres to every surface, not only those of ferromagnetic materials, has hitherto been the domain of science fiction. Now for the first time such a novel device exists. The fusion of a permanently magnetized magnetoactive polymer containing hard magnetic particles and an electret enhanced with ferroelectric particles has resulted in the development of a new smart device-the magnetoactive electret. Magnetoactive electrets can be made to exhibit the usual magnetic properties of permanent magnetism together with the electrostatic properties of electrets. This results in simultaneous magnetoadhesion and electroadhesion forces from the same elastomeric element. The biasing field, needed to avoid discontinuities concerned with transition through the zero point in operating curves, is normally provided by means of either a magnetic or an electric field. This novel technology provides both bias options in a single device.}, language = {en} } @misc{OPUS4-2399, title = {Soft robotics}, editor = {Monkman, Gareth J.}, publisher = {Bentham Science}, address = {Singapore}, isbn = {978-981-5051-72-8}, doi = {10.2174/97898150517281220101}, pages = {II, 168}, language = {en} } @article{BelyaevaKramarenkoStepanovetal., author = {Belyaeva, Inna A. and Kramarenko, Elena Yu and Stepanov, Gennady V. and Sorokin, Vladislav V. and Stadler, Dominik and Shamonin (Chamonine), Mikhail}, title = {Transient magnetorheological response of magnetoactive elastomers to step and pyramid excitations}, series = {SOFT MATTER}, volume = {12}, journal = {SOFT MATTER}, number = {11}, publisher = {ROYAL SOC CHEMISTRY}, doi = {10.1039/c5sm02690c}, pages = {2901 -- 2913}, abstract = {Transient rheological response of magnetoactive elastomers is experimentally studied using dynamic torsion at a fixed oscillation frequency in temporally stepwise changing magnetic fields and oscillation amplitudes. For step magnetic-field excitations, at least three exponential functions are required to reasonably describe the time behavior of the storage shear modulus over long time scales (>10(3) s). The deduced characteristic time constants of the corresponding rearrangement processes of the filler network differ approximately by one order of magnitude: tau(1) less than or similar to 10(1) s, tau(2) similar to 10(2) s, and tau(3) similar to 10(3) s. The sudden imposition of the external magnetic field activates a very fast rearrangement process with the characteristic time under 10 s, which cannot be determined more precisely due to the measurement conditions. Even more peculiar transient behavior has been observed during pyramid excitations, when either the external magnetic field was first stepwise increased and then decreased in a staircase manner at a fixed strain amplitude gamma or the strain amplitude gamma was first stepwise increased and then decreased in a staircase manner at a fixed magnetic field. In particular, the so-called "cross-over effect'' has been identified in both dynamical loading programs. This cross-over effect seems to be promoted by the application of the external magnetic field. The experimental results are discussed in the context of the specific rearrangement of the magnetic filler network under the simultaneous action of the external magnetic field and shear deformation. Striking similarities of the observed phenomena to the structural relaxation processes in glassy materials and to the jamming transition of granular materials are pointed out. The obtained results are important for fundamental understanding of material behavior in magnetic fields as well as for the development of devices on the basis of magnetoactive elastomeric materials.}, language = {en} } @incollection{ShamoninChamonineKramarenko, author = {Shamonin (Chamonine), Mikhail and Kramarenko, Elena Yu}, title = {Highly Responsive Magnetoactive Elastomers (Chapter 7)}, series = {Novel Magnetic Nanostructures}, booktitle = {Novel Magnetic Nanostructures}, editor = {Domracheva, Natalia and Caporali, Maria and Rentschler, Eva}, publisher = {Elsevier}, isbn = {9780128135945}, doi = {10.1016/B978-0-12-813594-5.00007-2}, pages = {221 -- 245}, abstract = {This chapter introduces composite smart materials known as magnetoactive (MAEs) or magnetorheological elastomers. It starts by defining these materials and distinguishing them from relevant magnetorheological fluids and ferrofluids. It then gives the overview of constitutive materials for the polymer matrix and filler particles. Next, the influence of external magnetic field on physical properties of MAEs is discussed. The emphasis is made on mechanical properties, which are the most important for real-world applications. In particular, magnetomechanical effects such as magnetostriction, magnetodeformation, and magnetorheological effect are discussed. The magnetic Payne effect is presented as an example of a nonlinear behavior. Electromagnetic and acoustic properties are also considered. The chapter finishes with the brief discussion of the future prospects in research and development of MAEs.}, language = {en} } @article{BurdinEkonomovChashinetal., author = {Burdin, Dmitrii A. and Ekonomov, Nikolai A. and Chashin, Dmitri V. and Fetisov, Leonid Y. and Fetisov, Yuri K. and Shamonin (Chamonine), Mikhail}, title = {Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures}, series = {Materials}, volume = {10}, journal = {Materials}, number = {10}, publisher = {MDPI}, doi = {10.3390/ma10101183}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-32185}, abstract = {The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm x 20 mm employed ferromagnetic layers of either an amorphous (metallic glass) alloy or nickel with a thickness of 20-200 m and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 m. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effectsuch as the mechanical resonance frequency f(r), the quality factor Q and the magnitude of the magnetoelectric coefficient (E) at the resonance frequencyare contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parametersYoung's modulus Y, the acoustic quality factor of individual layers, the dielectric constant epsilon, the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients ((n)) of the ferromagnetic layerare established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices.}, language = {en} } @article{NadzharyanShamoninChamonineKramarenko, author = {Nadzharyan, Timur A. and Shamonin (Chamonine), Mikhail and Kramarenko, Elena Yu}, title = {Theoretical Modeling of Magnetoactive Elastomers on Different Scales: A State-of-the-Art Review}, series = {Polymers}, volume = {14}, journal = {Polymers}, number = {19}, publisher = {MDPI}, doi = {10.3390/polym14194096}, pages = {1 -- 42}, abstract = {A review of the latest theoretical advances in the description of magnetomechanical effects and phenomena observed in magnetoactive elastomers (MAEs), i.e., polymer networks filled with magnetic micro- and/or nanoparticles, under the action of external magnetic fields is presented. Theoretical modeling of magnetomechanical coupling is considered on various spatial scales: from the behavior of individual magnetic particles constrained in an elastic medium to the mechanical properties of an MAE sample as a whole. It is demonstrated how theoretical models enable qualitative and quantitative interpretation of experimental results. The limitations and challenges of current approaches are discussed and some information about the most promising lines of research in this area is provided. The review is aimed at specialists involved in the study of not only the magnetomechanical properties of MAEs, but also a wide range of other physical phenomena occurring in magnetic polymer composites in external magnetic fields.}, language = {en} } @article{SnarskiiPodlasovShamoninChamonine, author = {Snarskii, Andrei A. and Podlasov, Sergii and Shamonin (Chamonine), Mikhail}, title = {Isotropic inertia tensor without symmetry of mass distribution}, series = {American Journal of Physics}, volume = {89}, journal = {American Journal of Physics}, number = {10}, publisher = {AIP Publishing}, doi = {10.1119/10.0005416}, pages = {916 -- 920}, abstract = {Conventional calculations of the inertia tensor in undergraduate physics course are usually done for highly symmetrical bodies. Students might therefore get the impression that the moment of inertia about any axis through the center of mass is the same only for bodies with the highest degree of symmetry relative to this point, e.g., for spheres. A simple, seemingly counterintuitive example is presented, showing that the moment of inertia of a non-regular body, here an assembly of material points, can be the same about any axis passing through its center of mass.}, language = {en} } @article{BodnarukBrunhuberKalitaetal., author = {Bodnaruk, Andrii V. and Brunhuber, Alexander and Kalita, Viktor M. and Kulyk, Mykola M. and Snarskii, Andrei A. and Lozenko, Albert F. and Ryabchenko, Sergey M. and Shamonin (Chamonine), Mikhail}, title = {Temperature-dependent magnetic properties of a magnetoactive elastomer: Immobilization of the soft-magnetic filler}, series = {Journal of Applied Physics}, volume = {123}, journal = {Journal of Applied Physics}, number = {11}, publisher = {AIP Publishing}, doi = {10.1063/1.5023891}, abstract = {The magnetic properties of a magnetoactive elastomer (MAE) filled with mu m-sized soft-magnetic iron particles have been experimentally studied in the temperature range between 150 K and 310 K. By changing the temperature, the elastic modulus of the elastomer matrix was modified, and it was possible to obtain magnetization curves for an invariable arrangement of particles in the sample and in the case when the particles were able to change their position within the MAE under the influence of magnetic forces. At low (less than 220 K) temperatures, when the matrix becomes rigid, the magnetization of the MAE does not show a hysteresis behavior, and it is characterized by a negative value of the Rayleigh constant. At room temperature, when the polymer matrix is compliant, a magnetic hysteresis exists where the dependence of the differential magnetic susceptibility on the magnetic field exhibits local maxima. The appearance of these maxima is explained by the elastic resistance of the matrix to the displacement of particles under the action of magnetic forces.}, language = {en} } @article{KalitaSnarskiiZorinetsetal., author = {Kalita, Viktor M. and Snarskii, Andrei A. and Zorinets, Denis and Shamonin (Chamonine), Mikhail}, title = {Single-particle mechanism of magnetostriction in magnetoactive elastomers}, series = {Physical Review E}, volume = {93}, journal = {Physical Review E}, number = {6}, publisher = {American Physical Society}, doi = {10.1103/PhysRevE.93.062503}, abstract = {Magnetoactive elastomers (MAEs) are composite materials comprised of micrometer-sized ferromagnetic particles in a nonmagnetic elastomermatrix. Asingle-particle mechanism ofmagnetostriction in MAEs, assuming the rotation of a soft magnetic, mechanically rigid particle with uniaxial magnetic anisotropy in magnetic fields is identified and considered theoretically within the framework of an alternative model. In this mechanism, the total magnetic anisotropy energy of the filling particles in the matrix is the sum over single particles. Matrix displacements in the vicinity of the particle and the resulting direction of the magnetization vector are calculated. The effect of matrix deformation is pronounced well if the magnetic anisotropy coefficient K is much larger than the shear modulus mu of the elastic matrix. The feasibility of the proposed magnetostriction mechanism in soft magnetoactive elastomers and gels is elucidated. The magnetic-field-induced internal stresses in the matrix lead to effects of magnetodeformation and may increase the elastic moduli of these composite materials.}, language = {en} } @article{SavelievChashinFetisovetal., author = {Saveliev, Dmitri and Chashin, Dmitri V. and Fetisov, Leonid Y. and Shamonin (Chamonine), Mikhail and Fetisov, Yuri K.}, title = {Ceramic-Heterostructure-Based Magnetoelectric Voltage Transformer with an Adjustable Transformation Ratio}, series = {Materials}, volume = {13}, journal = {Materials}, number = {18}, publisher = {MDPI}, doi = {10.3390/ma13183981}, pages = {1 -- 13}, abstract = {A voltage transformer employing the magnetoelectric effect in a composite ceramic heterostructure with layers of a magnetostrictive nickel-cobalt ferrite and a piezoelectric lead zirconate-titanate is described. In contrast to electromagnetic and piezoelectric transformers, a unique feature of the presented transformer is the possibility of tuning the voltage transformation ratio K using a dc magnetic field. The dependences of the transformer characteristics on the frequency and the amplitude of the input voltage, the strength of the control magnetic field and the load resistance are investigated. The transformer operates in the voltage range between 0 and 112 V, and the voltage transformation ratio K is tuned between 0 and 14.1 when the control field H changes between 0 and 6.4 kA/m. The power at the transformer output reached 63 mW, and the power conversion efficiency was 34\%. The methods for calculation of the frequency response, and the field and load characteristics of the transformer are proposed. The ways to improve performance characteristics of magnetoelectric transformers and their possible application areas are discussed.}, language = {en} } @article{SnarskiiZorinetsShamoninChamonineetal., author = {Snarskii, Andrei A. and Zorinets, Denis and Shamonin (Chamonine), Mikhail and Kalita, Viktor M.}, title = {Theoretical method for calculation of effective properties of composite materials with reconfigurable microstructure}, series = {Physica A: Statistical Mechanics and its Applications}, volume = {535}, journal = {Physica A: Statistical Mechanics and its Applications}, number = {December}, publisher = {Elsevier}, doi = {10.1016/j.physa.2019.122467}, abstract = {We propose a theoretical approach for calculating effective electric and magnetic properties of composites, with field dependent restructuring of the filler. The theory combines the effective medium approximation, extended to a field-dependent (variable) percolation threshold, with an approximate treatment of the nonlinearity of material properties. Theoretical results are compared with experiments on magnetorheological elastomers, which in the context of investigated phenomena are often called magnetoactive elastomers (MAEs). In MAEs with soft polymer matrices, the mutual arrangement of inclusions changes in an applied magnetic field. This reorganization of the microstructure leads to unconventionally large changes of electrical and magnetic properties. The obtained theoretical results describe observed phenomena in MAEs well. For the magnetodielectric effect, qualitative agreement between theory and experiment is demonstrated. In the case of magnetic permeability, quantitative agreement is achieved. The theoretical approach presented can be useful for the development of field-controlled smart materials and design of intelligent structures on their basis, because the field dependence of physical properties can be predicted. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} } @article{KostrovShamoninChamonineStepanovetal., author = {Kostrov, Sergei A. and Shamonin (Chamonine), Mikhail and Stepanov, Gennady V. and Kramarenko, Elena Yu}, title = {Magnetodielectric Response of Soft Magnetoactive Elastomers: Effects of Filler Concentration and Measurement Frequency}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {9}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ijms20092230}, pages = {1 -- 13}, abstract = {The magnetodielectric response of magnetoactive elastomers (MAEs) in its dependence on filler concentration, magnetic field, and test frequency is studied experimentally. MAEs are synthesized on the basis of a silicone matrix filled with spherical carbonyl iron particles characterized by a mean diameter of 4.5 mu m. The concentration of the magnetic filler within composite materials is equal to 70, 75, and 80 mass\%. The effective lossless permittivity epsilon as well as the dielectric loss tan grow significantly when the magnetic field increases. The permittivity increases and the dielectric loss decreases with increasing filler concentration. In the measurement frequency range between 1 kHz and 200 kHz, the frequency hardly affects the values of epsilon and tan in the absence of a magnetic field. However, both parameters decrease considerably with the growing frequency in a constant magnetic field. The more strongly the magnetic field is applied, the larger the change in permittivity and loss tangent at the same test frequency is observed. An equivalent circuit formulation qualitatively describes the main tendencies of the magnetodielectric response.}, language = {en} } @article{SindersbergerPremMonkman, author = {Sindersberger, Dirk and Prem, Nina and Monkman, Gareth J.}, title = {Structure formation in low concentration magnetoactive polymers}, series = {AIP advances}, volume = {9}, journal = {AIP advances}, number = {3}, publisher = {AIP Publishing}, doi = {10.1063/1.5079997}, abstract = {This paper concerns recent research into the autonomous formation of micro-structures in low carbonyl iron powder (CIP) concentration magneto active polymers (MAP). Higher concentrations of CIP show an isotropic distribution of magnetic filler throughout the entire sample, while autonomous structure formation is possible at mass concentrations lower than 3\%. The formation of micro-toroids commences as CIP concentration approaches 1\% wt. Further development of coherent rings with a defined order follow as CIP concentrations increase toward 2\% wt, whilst exceeding 3\% wt leads to the same isotropic distribution found in higher concentration MAP. Structured samples containing between 1\% wt and 3\% wt CIP were investigated using X-Ray tomography where solitary structures could clearly be observed. The ring structures represent microinductivities whose geometries can be manipulated during fabrication. In addition, these structures are magnetic field sensitive. This is not only relevant to applications in the GHz and THz areas but recent research has revealed implications for optical, thermal, acoustic and even chemical MAP sensors. (C) 2019 Author(s).}, language = {en} } @article{BodnarukKalitaKulyketal., author = {Bodnaruk, Andrii V. and Kalita, Viktor M. and Kulyk, Mykola M. and Lozenko, Albert F. and Ryabchenko, Sergey M. and Snarskii, Andrei A. and Brunhuber, Alexander and Shamonin (Chamonine), Mikhail}, title = {Temperature blocking and magnetization of magnetoactive elastomers}, series = {Journal of Magnetism and Magnetic Materials}, volume = {471}, journal = {Journal of Magnetism and Magnetic Materials}, number = {February}, publisher = {Elsevier}, doi = {10.1016/j.jmmm.2018.10.005}, pages = {464 -- 467}, abstract = {The magnetization of a magnetoactive elastomer (MAE) with microparticles of soft magnetic carbonyl iron embedded in a highly elastic matrix has been studied. It is shown that at high temperatures its magnetization curve has the form of a specific hysteresis loop. This hysteresis is attributed to the influence of displacement of magnetized particles in the elastically soft elastomer matrix under the effect of magnetic forces, leading to the change of magnetic interaction between the particles. In this case, there is a maximum in the field dependence of the magnetic susceptibility, the occurrence of which has been associated with the competition between rearrangement of particles, when they are displaced in a magnetic field, and saturation of particles' magnetization. When the MAE is cooled below approximately 225 K, both the magnetic hysteresis and the maximum in the field dependence of the magnetic susceptibility disappear. When the MAE material is cooled below the solidification temperature of the elastomer matrix, the displacements of the magnetic particles during magnetization are blocked by the rigid matrix. The magnetization reversal of the MAE is reversible. This means that the shape of subsequent magnetization loops remains constant and the sample returns into the initial non-magnetized state after the magnetic field is turned off.}, language = {en} } @article{FetisovChashinSavelievetal., author = {Fetisov, Yuri K. and Chashin, Dmitri V. and Saveliev, Dmitri and Fetisov, Leonid Y. and Shamonin (Chamonine), Mikhail}, title = {Anisotropic Magnetoelectric Effect in a Planar Heterostructure Comprising Piezoelectric Ceramics and Magnetostrictive Fibrous Composite}, series = {Materials}, volume = {12}, journal = {Materials}, number = {19}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ma12193228}, pages = {1 -- 13}, abstract = {The direct magnetoelectric (ME) effect is investigated in a planar structure comprising mechanically coupled layers of a magnetostrictive fibrous composite (MFC) and a piezoelectric ceramics (lead zirconate titanate, PZT). The MFC is an array of Ni-wires with a diameter of 200 mu m that are aligned parallel to each other in a single layer. The wires are separated by a distance of 250 or 500 mu m and fixed in a polyamide matrix. The structure was placed in a tangential constant field H and was excited by an alternating magnetic field h parallel to H, while the voltage generated by the PZT layer was measured. The resulting field dependences of the magnetization M(H) and the magnetostriction lambda(H) were determined by the orientation of the field H in the plane of the structure and the distance between the Ni-wires. The ME coupling coefficient of the structure decreased from 4.8 to 0.25 V/A when the orientation of H was changed from parallel to perpendicular to Ni-wires. With an increase in the excitation field amplitude h, a nonlinear ME effect in the output voltage, namely frequency doubling, was observed. The frequency and field dependences of the efficiency of the ME transduction in the MFC-piezoelectric heterostructure are well described by the existing theory.}, language = {en} } @article{PremSindersbergerMonkman, author = {Prem, Nina and Sindersberger, Dirk and Monkman, Gareth J.}, title = {Mini-Extruder for 3D Magnetoactive Polymer Printing}, series = {Advances in Materials Science and Engineering}, journal = {Advances in Materials Science and Engineering}, publisher = {HINDAWI}, doi = {10.1155/2019/8715718}, pages = {1 -- 8}, abstract = {This work describes the development of a new miniature extruder, essential to cavity-free 3D printing of silicone-based smart materials. This makes the 3D printing of magnetoactive and electroactive polymer soft robotic components and devices directly from CAD data possible. The special feature of such an extruder is that it is designed for use with addition-crosslinking RTV-2 silicones, including solid particulate additives. The extruder merges the respective components automatically during extrusion which obviates the need for premixing and vacuum evacuation. Problems associated with inhomogeneities and unwanted cavity production are consequently eliminated. Rheological details necessary to the design, together with some preliminary performance results, are presented.}, language = {en} } @article{BodnarukAndriiVBrunhuberetal., author = {Bodnaruk, and Andrii V., and Brunhuber, Alexander and Kalita, Viktor M. and Kulyk, Mykola M. and Kurzweil, Peter and Snarskii, Andrei A. and Lozenko, Albert F. and Ryabchenko, Sergey M. and Shamonin (Chamonine), Mikhail}, title = {Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity}, series = {Polymer}, volume = {162}, journal = {Polymer}, number = {January}, publisher = {Elsevier}, doi = {10.1016/j.polymer.2018.12.027}, pages = {63 -- 72}, abstract = {Polydimethylsiloxane based magnetoactive elastomers demonstrate above the melting transition range (e.g. at room temperature) an induced uniaxial magnetic anisotropy, which grows with increasing magnetic field. By freezing a material down to 150 K, displaced iron microparticles are immobilized, so that the magnetic anisotropy can be measured. Magnetic anisotropy "constant" is a consequence of particle displacements and a characteristic of the energy of internal deformations in the polymer matrix. The maximum anisotropy constant of the filling is at least one order of magnitude larger than the shear modulus of the pure elastomer (matrix). In a magnetic field, the gain in the rigidity of the composite material is attributed to the magnetomechanical coupling, which is in turn a source of anisotropy. The concept of effective magnetic field felt by the magnetization allows one to explain the magnetization curve at room temperature from low-temperature measurements. The results can be useful for developing vibration absorbers and isolators.}, language = {en} } @article{JordaanPunzetMelnikovetal., author = {Jordaan, Joshua and Punzet, Stefan and Melnikov, Anton and Sanches, Alexandre and Oberst, Sebastian and Marburg, Steffen and Powell, David A.}, title = {Measuring monopole and dipole polarizability of acoustic meta-atoms}, series = {Applied physics letters}, volume = {113}, journal = {Applied physics letters}, number = {22}, publisher = {AIP Publishing}, doi = {10.1063/1.5052661}, abstract = {We present a method to extract monopole and dipole polarizability from experimental measurements of two-dimensional acoustic meta-atoms. In contrast to extraction from numerical results, this enables all second-order effects and uncertainties in material properties to be accounted for. We apply the technique to 3D-printed labyrinthine meta-atoms of a variety of geometries. We show that the polarizability of structures with a shorter acoustic path length agrees well with numerical results. However, those with longer path lengths suffer strong additional damping, which we attribute to the strong viscous and thermal losses in narrow channels.}, language = {en} } @article{SnarskiiKalitaShamoninChamonine, author = {Snarskii, Andrei A. and Kalita, Viktor M. and Shamonin (Chamonine), Mikhail}, title = {Renormalization of the critical exponent for the shear modulus of magnetoactive elastomers}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, publisher = {Nature}, doi = {10.1038/s41598-018-22333-6}, pages = {1 -- 8}, abstract = {It is shown that the critical exponent for the effective shear modulus of a composite medium where a compliant polymer matrix is filled with ferromagnetic particles may significantly depend on the external magnetic field. The physical consequence of this dependence is the critical behavior of the relative magnetorheological effect.}, language = {en} } @article{ForsterMayerRabindranathetal., author = {Forster, Eva and Mayer, Matthias and Rabindranath, Raman and B{\"o}se, Holger and Schlunck, G{\"u}nther and Monkman, Gareth J. and Shamonin (Chamonine), Mikhail}, title = {Patterning of ultrasoft, agglutinative magnetorheological elastomers}, series = {Journal of applied polymer science}, volume = {128}, journal = {Journal of applied polymer science}, number = {4}, publisher = {Wiley}, address = {New York, NY}, doi = {10.1002/app.38500}, pages = {2508 -- 2515}, abstract = {A low-cost wax-cast molding technique for structuring ultrasoft (Young's modulus ≤ 40 kPa), agglutinative magnetorheological elastomer (MRE) material is presented. MRE structures ranging from a few millimeters down to the micrometer range with highly reproducible results are possible. Semitransparent MREs are also fabricated and their surfaces modified accordingly. This method opens new possibilities for MREs in biomedical engineering and microfluidic applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013}, language = {en} } @inproceedings{KhaledReichlingBruhnsetal., author = {Khaled, W. and Reichling, S. and Bruhns, Otto T. and Ermert, Helmut and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Baumann, Michael and B{\"o}se, Holger and Freimuth, Herbert and Tunayar, A.}, title = {Palpation imaging using a haptic sensor actuator system for medical applications}, series = {Actuator 2004 : 9th International Conference on New Actuators \& 3rd International Exhibition on Smart Actuators and Drive Systems, 14-16 June 2004, Bremen, Germany}, booktitle = {Actuator 2004 : 9th International Conference on New Actuators \& 3rd International Exhibition on Smart Actuators and Drive Systems, 14-16 June 2004, Bremen, Germany}, publisher = {HVG Hanseatische Veranstaltungs-GmbH}, address = {Bremen}, pages = {379 -- 382}, language = {en} } @article{MonkmanBoody, author = {Monkman, Gareth J. and Boody, F. P.}, title = {Ein Vergleich verschiedene Master-Programme}, series = {Die Neue Hochschule}, journal = {Die Neue Hochschule}, number = {1}, publisher = {DUZ Verlags- und Medienhaus GmbH}, address = {Berlin}, pages = {12 -- 13}, language = {de} } @inproceedings{Monkman, author = {Monkman, Gareth J.}, title = {Auswirkungen der Mechatronik auf die Entwicklungsmethodik}, series = {Mechatronik Forum, OTTI, Handelskammer Regensburg, 25.-26. Oktober 2000}, booktitle = {Mechatronik Forum, OTTI, Handelskammer Regensburg, 25.-26. Oktober 2000}, language = {de} } @inproceedings{Monkman, author = {Monkman, Gareth J.}, title = {Sensors and Actuators in Automation}, series = {Ostbayerisches Fachforum f{\"u}r Mechatronik, Roding, 16. M{\"a}rz 2001}, booktitle = {Ostbayerisches Fachforum f{\"u}r Mechatronik, Roding, 16. M{\"a}rz 2001}, language = {en} } @inproceedings{TunayarKleinFreimuthetal., author = {Tunayar, A. and Klein, Dagmar and Freimuth, Herbert and B{\"o}se, Holger and Baumann, Michael and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Ermert, Helmut and Khaled, W.}, title = {A tactile array based on electrorheological fluids}, series = {Actuator 2004 : 9th International Conference on New Actuators \& 3rd International Exhibition on Smart Actuators and Drive Systems, 14-16 June 2004, Bremen, Germany}, booktitle = {Actuator 2004 : 9th International Conference on New Actuators \& 3rd International Exhibition on Smart Actuators and Drive Systems, 14-16 June 2004, Bremen, Germany}, publisher = {HVG Hanseatische Veranstaltungs-GmbH}, address = {Bremen}, pages = {601 -- 604}, language = {en} } @inproceedings{ZappaMonkmanEgersdoerferetal., author = {Zappa, O. and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Datzer, G. and Kahled, W. and B{\"o}se, Holger and Tunayar, A.}, title = {High Voltage Switching using Bulk GaAs}, series = {Actuator 2004 : 9th International Conference on New Actuators \& 3rd International Exhibition on Smart Actuators and Drive Systems, 14-16 June 2004, Bremen, Germany}, booktitle = {Actuator 2004 : 9th International Conference on New Actuators \& 3rd International Exhibition on Smart Actuators and Drive Systems, 14-16 June 2004, Bremen, Germany}, publisher = {HVG Hanseatische Veranstaltungs-GmbH}, address = {Bremen}, language = {en} } @misc{MonkmanSindersberger, author = {Monkman, Gareth J. and Sindersberger, Dirk}, title = {Investigation of the electrical properties of magneto-active polymers}, series = {DFG-Tagung, Benedikbeuern, September 2015}, journal = {DFG-Tagung, Benedikbeuern, September 2015}, language = {en} } @article{Monkman, author = {Monkman, Gareth J.}, title = {Special Issue on Miniature Actuators}, series = {Mechatronics}, volume = {10}, journal = {Mechatronics}, number = {4/5}, publisher = {Elsevier}, doi = {10.1016/S0957-4158(99)00061-6}, pages = {429 -- 430}, language = {en} } @article{Monkman, author = {Monkman, Gareth J.}, title = {Electroadhesive Microgrippers}, series = {Assembly Automation}, volume = {24}, journal = {Assembly Automation}, number = {1}, publisher = {MCB University Press}, pages = {326 -- 330}, language = {en} } @article{HesmerTatartschukZhuromskyyetal., author = {Hesmer, Frank and Tatartschuk, Eugen and Zhuromskyy, Oleksandr and Radkovskaya, Anna A. and Shamonin (Chamonine), Mikhail and Hao, Tong and Stevens, Chris J. and Faulkner, Grahame and Edwards, David J. and Shamonina, Ekaterina}, title = {Coupling mechanisms for split ring resonators: Theory and experiment}, series = {Physica status solidi b}, volume = {244}, journal = {Physica status solidi b}, number = {4}, publisher = {Wiley}, doi = {10.1002/pssb.200674501}, pages = {1170 -- 1175}, abstract = {We study experimentally and theoretically coupling mechanisms between metamaterial elements of the split ring resonator (SRR) type. We show that, depending on the orientation of the elements relative to each other, the coupling may be either of magnetic or electric type or a combination of both. Experimental results on SRRs with resonances around 1.7-1.9 GHz agree quantitatively with results of simulations (CST Microwave Studio). Further simulations provide analysis for a variety of SRRs both in the GHz and in the 20 THz frequency regions. The variety of coupling mechanisms can be employed in designing near field manipulating devices based on propagation of slow waves.}, language = {en} } @article{SydorukRadkovskayaZhuromskyyetal., author = {Sydoruk, O. and Radkovskaya, Anna A. and Zhuromskyy, Oleksandr and Shamonina, Ekaterina and Shamonin (Chamonine), Mikhail and Stevens, Chris J. and Faulkner, Grahame and Edwards, David J. and Solymar, L.}, title = {Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell}, series = {PHYSICAL REVIEW B}, volume = {73}, journal = {PHYSICAL REVIEW B}, number = {22}, publisher = {APS}, doi = {10.1103/PhysRevB.73.224406}, abstract = {A theoretical and experimental study of magnetic metamaterials with unit cells containing two resonant elements is presented. The properties of these structures, consisting of split rings, are governed by strongly anisotropic magnetic coupling between individual elements. This coupling leads to propagation of slow magnetoinductive waves in the vicinity of the resonant frequency. The wavelength of magnetoinductive waves is much smaller than the free-space wavelength of the electromagnetic radiation. This opens up the possibility of manipulating the near field on a subwavelength scale. We develop a theoretical formulation for coupled chains of metamaterial elements allowing the tailoring of their guiding properties in the near field. In a comprehensive analysis modes of coupled waveguides supporting forward and/or backward waves are identified and the corresponding hybridization mechanisms for dispersion equations of magnetoinductive waves are determined. Analytical predictions are verified both experimentally and numerically on a variety of coupled waveguides. The approach can be employed for the design of near-field manipulating devices.}, language = {en} } @article{RadkovskayaShamoninChamonineStevensetal., author = {Radkovskaya, Anna A. and Shamonin (Chamonine), Mikhail and Stevens, Chris J. and Faulkner, Grahame and Edwards, David J. and Shamonina, Ekaterina and Solymar, L.}, title = {An experimental study of the properties of magnetoinductive waves in the presence of retardation}, series = {Journal of Magnetism and Magnetic Materials}, volume = {300}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, doi = {10.1103/physrevb.73.224406}, pages = {29 -- 32}, abstract = {Magnetoinductive (MI) waves owe their existence to the magnetic coupling between metamaterial elements. First experiments confirming the existence of MI waves were carried out on capacitively loaded loops and Swiss Rolls about three orders of magnitude smaller than the operating wavelengths (5-15 m) so that the radiation effects did not play any significant role. In the present paper MI waves are studied experimentally on various types of split ring resonators of about 1 cm diameter operating in the microwave region between 1 and 2 GHz. Our results prove that retardation has a significant effect upon the propagation of MI waves.}, language = {en} } @article{RadkovskayaShamoninChamonineStevensetal., author = {Radkovskaya, Anna A. and Shamonin (Chamonine), Mikhail and Stevens, Chris J. and Faulkner, Grahame and Edwards, David J. and Shamonina, Ekaterina and Solymar, L.}, title = {Resonant frequencies of a combination of split rings: Experimental, analytical and numerical study}, series = {Microwave and Optical Technoly Letters}, volume = {46}, journal = {Microwave and Optical Technoly Letters}, number = {5}, publisher = {Wiley}, doi = {10.1002/mop.21021}, pages = {473 -- 476}, abstract = {The resonant frequencies of five different ring resonators are measured with the aid of a network analyser within the frequency range of about 1.5 to 2.8 GHz. The resonant frequencies for those configurations are also determined from numerical calculations using the commercially available MICRO-STRIPES package. The experimental and numerical results are shown to be very close to each other. Analytical results from various authors, available for three of the configurations, are also compared with the experimental results; one of them leads to a large discrepancy, but the other analytical approximations are shown to be not too far off.}, language = {en} } @article{ShamoninChamonineShamoninaKalininetal., author = {Shamonin (Chamonine), Mikhail and Shamonina, Ekaterina and Kalinin, V. and Solymar, L.}, title = {Resonant frequencies of a split-ring resonator: Analytical solutions and numerical simulations}, series = {Microwave and optical technology letters}, volume = {44}, journal = {Microwave and optical technology letters}, number = {2}, publisher = {Wiley}, doi = {10.1002/mop.20567}, pages = {133 -- 136}, abstract = {A set of differential equations describing the current andvoltage distribution in a split-ring resonator is derived and solved ana-lytically. The resonant frequencies may be obtained from the solution of a characteristic equation. An approximate solution for the lowest reso-nant frequency agrees with that obtained by heuristic arguments. The analytical results are supported by numerical simulations}, language = {en} } @article{ShamoninChamonineShamoninaKalininetal., author = {Shamonin (Chamonine), Mikhail and Shamonina, Ekaterina and Kalinin, V. and Solymar, L.}, title = {Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring}, series = {Journal of Applied Physics}, volume = {95}, journal = {Journal of Applied Physics}, number = {7}, publisher = {AIP}, doi = {10.1063/1.1652251}, abstract = {An equivalent circuit, consisting of bulk and distributed elements, is derived for describing the properties of a potential metamaterial element capable of providing negative effective permeability. It is the singly split double ring (SSDR), a special case of the split ring resonator (J. B. Pendry et al., IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)), obtained when the gap capacitance in the inner ring is infinitely large. The variables are the inter-ring voltage and the currents flowing in the inner and outer rings. The excitation is assumed in the form of a spatially constant temporally varying magnetic field. The functions, showing the angular variation of the variables, are found by solving a set of differential equations with boundary conditions imposed at the position of the split. It is shown from the analytical solution that the SSDR can have resonant frequencies in the full spectrum from very low to very high frequencies. It is pointed out in particular that whenever the mean diameter of the ring is equal to an odd multiple of the half wavelength it is always possible to find a set of parameters which will give rise to resonance. As examples the resonant frequencies are determined for eight sets of parameters. Results are also derived by replacing the distributed circuit with a number of discrete circuits. It is finally shown that the results obtained from the equivalent circuit model are in excellent agreement with those derived from the MICRO-STRIPES numerical package which solves Maxwell's equations in the time domain.}, language = {en} } @article{KlankHagedornHolthausetal., author = {Klank, Michael and Hagedorn, Oliver and Holthaus, Carsten and Shamonin (Chamonine), Mikhail and D{\"o}tsch, Horst}, title = {Characterization and optimization of magnetic garnet films for magneto-optical visualization of magnetic field distributions}, series = {NDT \& E International}, volume = {36}, journal = {NDT \& E International}, number = {6}, publisher = {Elsevier}, doi = {10.1016/S0963-8695(03)00012-4}, pages = {375 -- 381}, abstract = {Rare-earth iron garnet films with in-plane anisotropy grown on (111)-oriented substrates can be used as magneto-optical indicator films for visualization of magnetic leakage fields in nondestructive evaluation. The influence of Faraday rotation, Faraday ellipticity, absorption and film thickness on the performance of a magneto-optical indicator film is investigated. A new optimization method is introduced and compared with the method of contrast optimization. The theory is experimentally verified and an application example is presented.}, language = {en} } @article{ApelsmeierSchmaussShamoninChamonine, author = {Apelsmeier, Andreas and Schmauss, Bernhard and Shamonin (Chamonine), Mikhail}, title = {Compensation of parasitic losses in an extrinsic fiber-optic temperature sensor based on intensity measurement}, series = {Sensors and Actuators A: Physical}, volume = {173}, journal = {Sensors and Actuators A: Physical}, number = {1}, doi = {10.1016/j.sna.2011.10.015}, pages = {49 -- 54}, abstract = {A method of referencing in an extrinsic optical fiber sensor system utilizing temperature dependence of the absorption edge in a semiconductor crystal (semi-insulating iron-doped indium phosphide) is demonstrated. The intensity reference is provided by controlling the temperature of an LED source and transmission measurements with different emission spectra. A transient operation regime is introduced. The entire process is controlled by a microprocessor unit. The performance of the sensor system is investigated and it is shown that the connector losses may be compensated for. Contrary to the published works performed with GaAs crystals it was not observed that the absorption coefficient of the semiconductor follows the law for idealized direct-gap semiconductor but can be described by the so-called Urbach tail. Since the proposed sensor system comprises a single LED source, simple electronics and no optical fiber couplers it is promising for realization of low-cost fiber-optic temperature sensors, e.g. for power transformer monitoring or magnetic resonance imaging applications.}, language = {en} } @article{ApelsmeierGleixnerMayeretal., author = {Apelsmeier, Andreas and Gleixner, Ramona and Mayer, Matthias and Shamonin (Chamonine), Mikhail and Schmauss, Bernhard}, title = {Intensity referencing in an extrinsic optical fiber temperature sensor}, series = {Procedia Engineering}, volume = {5}, journal = {Procedia Engineering}, publisher = {Elsevier}, doi = {10.1016/j.proeng.2010.09.301}, pages = {1095 -- 1098}, abstract = {Optical fiber sensors based on intensity measurement require some form of intensity referencing to avoid errors arising from parasitic losses. Known techniques of referencing such as balanced bridge, divided beam systems or two-wavelength referencing are not suitable for low-cost applications since they use relatively complicated optical components such as multiple LED sources, couplers, filters etc. In this work a novel method of referencing in an extrinsic optical fiber sensor system utilizing temperature dependence of absorption edge in a semiconductor crystal is described. The sensor system comprises a single LED source and no optical fiber junctions. The emission spectrum of an LED depends on its temperature. The reference is provided by controlling the temperature of an LED source and transmission measurements with different emission spectra. The entire process is controlled by a microprocessor unit. Performance of a sensor system is investigated and it is shown that the losses in connectors may be compensated for.}, language = {en} } @article{TrautnerSchmaussShamoninChamonine, author = {Trautner, Ralph and Schmauss, Bernhard and Shamonin (Chamonine), Mikhail}, title = {Herstellung und Charakterisierung eines extrinsischen faseroptischen Elementarsensors zur Temperaturmessung}, series = {tm - Technisches Messen}, volume = {75}, journal = {tm - Technisches Messen}, number = {10}, publisher = {De Gruyter}, doi = {10.1524/teme.2008.0866}, abstract = {Es werden Herstellung und Charakterisierung eines faseroptischen Elementarsensors zur Temperaturmessung vorgestellt. Der Sensorkopf in Form eines Prismas aus Indiumphosphid nutzt die Temperaturabh{\"a}ngigkeit der Absorptionskante des Halbleitermaterials. Aufgrund der Abmessungen des Prismas im Grenzbereich von Feinmechanik zu Mikrosystemtechnik ist ein angepasstes Herstellungsverfahren notwendig.}, language = {de} } @article{KreitmeierChashinFetisovetal., author = {Kreitmeier, Florian and Chashin, Dmitri V. and Fetisov, Yuri K. and Fetisov, Leonid Y. and Schulz, Irene and Monkman, Gareth J. and Shamonin (Chamonine), Mikhail}, title = {Nonlinear Magnetoelectric Response of Planar Ferromagnetic-Piezoelectric Structures to Sub-Millisecond Magnetic Pulses}, series = {Sensors}, volume = {12}, journal = {Sensors}, number = {11}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/s121114821}, pages = {14821 -- 14837}, abstract = {The magnetoelectric response of bi- and symmetric trilayer composite structures to pulsed magnetic fields is experimentally investigated in detail. The structures comprise layers of commercially available piezoelectric (lead zirconate titanate) and magnetostrictive (permendur or nickel) materials. The magnetic-field pulses have the form of a half-wave sine function with duration of 450 µs and amplitudes ranging from 500 Oe to 38 kOe. The time dependence of the resulting voltage is presented and explained by theoretical estimations. Appearance of voltage oscillations with frequencies much larger than the reciprocal pulse length is observed for sufficiently large amplitudes (~1-10 kOe) of the magnetic-field pulse. The origin of these oscillations is the excitation of bending and planar acoustic oscillations in the structures. Dependencies of the magnetoelectric voltage coefficient on the excitation frequency and the applied magnetic field are calculated by digital signal processing and compared with those obtained by the method of harmonic field modulation. The results are of interest for developing magnetoelectric sensors of pulsed magnetic fields as well as for rapid characterization of magnetoelectric composite structures.}, language = {en} } @inproceedings{KreitmeierSchulzMonkmanetal., author = {Kreitmeier, Florian and Schulz, Irene and Monkman, Gareth J. and Shamonin (Chamonine), Mikhail and Fetisov, Yuri K. and Chashin, Dmitri V. and Fetisov, Leonid Y.}, title = {Observation of Nonlinear Magnetoelectric Response to Magnetic Pulses in Layered Magnetostrictive-Piezoelectric Structures}, publisher = {IEEE}, doi = {10.1109/ISAF.2012.6297739}, abstract = {A detailed experimental study of the magnetoelectric response of planar bi- and symmetric trilayer composite structures to magnetic field pulses is reported. The structures consist of layers of commercially available piezoelectric (lead zirconate titanate) and magnetostrictive (permendur or nickel) materials. The magnetic-field pulses have the form of a half-wave sine function with duration of 450 μs and amplitude from 500 Oe up to 38 kOe. The measurement method is explained and the measured time dependence of the resulting voltage is presented. The most interesting case, when pulse amplitudes are sufficiently large (~ 1-10 kOe) and various types of acoustic oscillation with frequencies much larger than the reciprocal pulse length are excited in the structures, is considered. The dependencies of the magnetoelectric voltage coefficient on the excitation frequency and the applied magnetic field are calculated. By digital signal processing the results are compared with those obtained by the method of harmonic field modulation (HFM). The findings are of interest for developing magnetoelectric sensors for pulsed magnetic fields as well as for rapid characterization of magnetoelectric composite structures.}, language = {en} } @misc{SorokinStepanovVasilievetal., author = {Sorokin, Vladislav V. and Stepanov, Gennady V. and Vasiliev, V. G. and Kramarenko, Elena Yu and Mayer, M. and Shamonin (Chamonine), Mikhail and Monkman, Gareth J.}, title = {Investigation of Dynamic Modulus and Normal Force of Magnetorheological Elastomers with Soft and Hard Magnetic Fillers}, series = {NANO 2014, July 13 - 18, 2014, Moscow ; Section 06 - Polymer, Organic and Other Soft Matter Materials}, journal = {NANO 2014, July 13 - 18, 2014, Moscow ; Section 06 - Polymer, Organic and Other Soft Matter Materials}, address = {Moscow}, language = {en} } @inproceedings{HecknerStrakaSchubertetal., author = {Heckner, T. and Straka, M. and Schubert, A. and Petchartee, Somrak and Monkman, Gareth J.}, title = {Entwicklung eines Navigationssystems f{\"u}r autonome mobile Robotersysteme}, series = {International Mechatronik Forum, Linz}, booktitle = {International Mechatronik Forum, Linz}, pages = {520 -- 527}, language = {de} } @article{StollMayerMonkmanetal., author = {Stoll, Andrea and Mayer, Matthias and Monkman, Gareth J. and Shamonin (Chamonine), Mikhail}, title = {Evaluation of highly compliant magneto-active elastomers with colossal magnetorheological response}, series = {Journal of applied polymer science}, journal = {Journal of applied polymer science}, publisher = {Wiley}, address = {New York, NY}, issn = {1097-4628}, doi = {10.1002/app.39793}, abstract = {Highly compliant elastomers with a shear storage modulus as low as 25 Pa are prepared using commercially available silicone, plasticizer, and tactile mutator silicone additive. They are used as matrix material for magneto-active elastomers (MAEs) with carbonyl iron contents between 0 and 85 wt \%. In the absence of an external magnetic field, the storage modulus of MAEs based on two selected mixtures ranges between ~100 Pa and ~2000 Pa. Addition of a mutator to the matrix mixture results in a long post-cure period depending on the curing temperature and the initial mixture. In the presence of a magnetic field, the presented MAEs exhibit a strong magneto-induced change in storage modulus resulting in a colossal magnetorheological effect of >106 \% which is ~30 times higher than previously reported values. The results are of interest in applications using such elastomers as cell substrates with magnetically tunable rigidity.}, language = {en} } @book{MonkmanHesseSteinmannetal., author = {Monkman, Gareth J. and Hesse, Stefan and Steinmann, Ralf and Schunk, Henrik}, title = {Robot Grippers}, publisher = {Wiley}, isbn = {9783527406197}, doi = {10.1002/9783527610280}, abstract = {Since robotic prehension is widely used in all sectors of manufacturing industry, this book fills the need for a comprehensive, up-to-date treatment of the topic. As such, this is the first text to address both developers and users, dealing as it does with the function, design and use of industrial robot grippers. The book includes both traditional methods and many more recent developments such as micro grippers for the optolectronics industry. Written by authors from academia, industry and consulting, it begins by covering the four basic categories of robotic prehension before expanding into sections dealing with endeffector design and control, robotic manipulation and kinematics. Later chapters go on to describe how these various gripping techniques can be used for a common industrial aim, with details of related topics such as: kinematics, part separation, sensors, tool excahnge and compliance. The whole is rounded off with specific examples and case studies. With more than 570 figures, this practical book is all set to become the standard for advanced students, researchers and manufacturing engineers, as well as designers and project managers seeking practical descriptions of robot endeffectors and their applications.}, language = {en} } @article{Monkman, author = {Monkman, Gareth J.}, title = {Advances in Shape Memory Polymer Actuation}, series = {Mechatronics}, volume = {10}, journal = {Mechatronics}, number = {4/5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4006}, doi = {10.1016/S0957-4158(99)00068-9}, pages = {489 -- 498}, abstract = {Shape memory materials fulfill an important role in both actuation and mechanical coupling between actuators and associated dynamic systems. The simplest techniques are thermally based and in addition to the more common shape memory alloys there are also shape memory polymers. These have similar characteristics to those of their metallic cousins, but there the relationship stops. The basic physical principles are very different and this paper attempts to outline the current state-of-the-art to those already involved with the technology and perhaps open a fresh chapter in smart materials to those who are new to it.}, language = {en} } @article{Monkman, author = {Monkman, Gareth J.}, title = {Precise Piezoelectric Prehension}, series = {Industrial Robot}, volume = {27}, journal = {Industrial Robot}, number = {3}, publisher = {MCB University Press}, issn = {0143-991x}, doi = {10.1108/01439910010371605}, pages = {189 -- 194}, abstract = {Piezoelectric actuators are well established for use in expensive optical equipment. Within the last decade, relatively inexpensive piezoelectric actuators have become established technology in pneumatic switching and the first piezoelectrically driven impactive robot grippers are just starting to emerge. Although this article concentrates largely on the use of piezoelectric actuators for use in robot gripping systems, the potential for applications outside this field is immense.}, language = {en} } @article{Monkman, author = {Monkman, Gareth J.}, title = {Workpiece Retention during Machine Processing}, series = {Assembly Automation}, volume = {21}, journal = {Assembly Automation}, number = {1}, publisher = {Emerald}, address = {Bringley}, issn = {1758-4078}, doi = {10.1108/01445150110381754}, pages = {61 -- 67}, abstract = {Discusses the failings of conventional fixturing systems such as jigs and clamps and describes how electrorheological fluids can be used for flexible fixturing and workpiece retention.}, language = {en} } @article{MayerRabindranathBoerneretal., author = {Mayer, Matthias and Rabindranath, Raman and B{\"o}rner, Juliane and H{\"o}rner, Eva and Bentz, Alexander and Salgado, Josefina and Han, Hong and B{\"o}se, Holger and Probst, J{\"o}rn and Shamonin (Chamonine), Mikhail and Monkman, Gareth J. and Schlunck, G{\"u}nther}, title = {Ultra-Soft PDMS-Based Magnetoactive Elastomers as Dynamic Cell Culture Substrata}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {10}, publisher = {PLOS}, doi = {10.1371/journal.pone.0076196}, abstract = {Mechanical cues such as extracellular matrix stiffness and movement have a major impact on cell differentiation and function. To replicate these biological features in vitro, soft substrata with tunable elasticity and the possibility for controlled surface translocation are desirable. Here we report on the use of ultra-soft (Young's modulus <100 kPa) PDMS-based magnetoactive elastomers (MAE) as suitable cell culture substrata. Soft non-viscous PDMS (<18 kPa) is produced using a modified extended crosslinker. MAEs are generated by embedding magnetic microparticles into a soft PDMS matrix. Both substrata yield an elasticity-dependent (14 vs. 100 kPa) modulation of α-smooth muscle actin expression in primary human fibroblasts. To allow for static or dynamic control of MAE material properties, we devise low magnetic field (≈40 mT) stimulation systems compatible with cell-culture environments. Magnetic field-instigated stiffening (14 to 200 kPa) of soft MAE enhances the spreading of primary human fibroblasts and decreases PAX-7 transcription in human mesenchymal stem cells. Pulsatile MAE movements are generated using oscillating magnetic fields and are well tolerated by adherent human fibroblasts. This MAE system provides spatial and temporal control of substratum material characteristics and permits novel designs when used as dynamic cell culture substrata or cell culture-coated actuator in tissue engineering applications or biomedical devices.}, language = {en} } @inproceedings{KhaledBruhnsReichlingetal., author = {Khaled, W. and Bruhns, Otto T. and Reichling, S. and B{\"o}se, Holger and Baumann, Michael and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Meier, Alexander and Klein, Dagmar and Freimuth, Herbert and Ermert, Helmut}, title = {A haptic system for virtual reality applications based on ultrasound elastography and electrorheological fluids}, series = {Acoustical Imaging (ACIM)}, volume = {27}, booktitle = {Acoustical Imaging (ACIM)}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-90-481-6652-7}, issn = {0270-5117}, doi = {10.1007/978-1-4020-2402-3_85}, pages = {667 -- 674}, abstract = {Mechanical properties of biological tissue represent important diagnostic information and are of histological and pathological relevance. Malignant tumors are significantly stiffer and more immobile than surrounding healthy tissue. Hard calcifications in vessels occur due to arteriosclerosis. The problem is, that such information is usually not available or can only be obtained by manual palpation, which is subjective and limited in sensitivity. It requires intuitive assessment and does not allow quantitative documentation. Unfortunately, none of the established medical imaging equipment such as magnetic resonance imaging (MRI) or X-ray computed tomography (CT) can provide direct measure of tissue elasticity. On the one hand a suitable sensor is required for quantitative measurement of mechanical tissue properties. On the other hand there is also some need for a realistic haptic display of such tissue properties. Suitable actuator arrays with high spatial resolution acting in real time are required. A haptic sensor actuator system is presented in this paper including a sensitive sensor part and an actuator array for different applications. The mechanical consistency of an object is to be locally specified using a sensor system and represented perceptibly in a remote position on an actuator system for the user. The sensor system uses ultrasound (US) elastography, whereas the actuator array is based on electrorheological (ER) fluids.}, language = {en} } @article{FuechtmeierEgersdoerferMaietal., author = {F{\"u}chtmeier, Bernd and Egersdoerfer, Stefan and Mai, Ronny and Hente, Rainer and Dragoi, Daniel and Monkman, Gareth J. and Nerlich, Michael}, title = {Reduction of femoral shaft fractures in vitro by a new developed reduction robot system "RepoRobo"}, series = {Injury}, volume = {35}, journal = {Injury}, number = {1, Supplement}, publisher = {Elsevier}, organization = {Elsevier}, issn = {1879-0267}, doi = {10.1016/j.injury.2004.05.019}, pages = {113 -- 119}, abstract = {Closed reduction of the long bones is associated with the use of considerable force. This force must be maintained for the reduction maneuver and fixation process. At present, apart from the extension table or the large AO distractor, only rather inadequate reduction aids are available. A solution to this problem is being sought in the form of a robotic system with which precision can be improved and the holding effort reduced. In the research project presented here, a synthetic femur with integrated tensioned mainspring and a 32-A3 type fracture served as a bone reduction model. The fracture was stabilized with a standard AO fixator. A St{\"a}ubli robot (model RX130) was converted by appropriate modification so that it could be used for the reduction of femoral shaft fractures in vitro. The robot was equipped with a pneumatic 2-fingered gripper, on which the fingers have been modified so that they can grip the AO fixator clamp. A Force-Feedback-Sensor was inserted between the gripper and the robot to obtain online recordings of the forces and moments in all three axes. With this setup it is possible to achieve precise reduction of the fracture in all planes under visual control.}, language = {en} } @inproceedings{KhaledReichlingBruhnsetal., author = {Khaled, W. and Reichling, S. and Bruhns, Otto T. and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Baumann, Michael and B{\"o}se, Holger and Klein, Dagmar and Freimuth, Herbert and Tunayar, A. and Lorenz, A. and Pessavento, A. and Ermert, Helmut}, title = {Palpation imaging using a haptic system for virtual reality applications in medicine}, series = {Perspective in image-guided surgery : proceedings of the Scientific Workshop on Medical Robotics, Navigation, and Visualization : RheinAhrCampus Remagen, Germany, 11-12 March}, booktitle = {Perspective in image-guided surgery : proceedings of the Scientific Workshop on Medical Robotics, Navigation, and Visualization : RheinAhrCampus Remagen, Germany, 11-12 March}, publisher = {World Scientific Publ.}, address = {Singapore}, pages = {407 -- 414}, language = {en} } @inproceedings{KhaledReichlingBruhnsetal., author = {Khaled, W. and Reichling, S. and Bruhns, Otto T. and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Baumann, Michael and B{\"o}se, Holger and Klein, Dagmar and Freimuth, Herbert and Tunayar, A. and Lorenz, A. and Pessavento, A. and Ermert, Helmut}, title = {Palpation Imaging using a Haptic System for Virtual Reality Applications in Medicine}, series = {Proceedings of the 12th Annual Medicine Meets Virtual Reality Conference: - Building a Better You: The Next Tools for Medical Education, Diagnosis, and Care. - Medicine Meets Virtual Reality (MMVR) - Newport Beach (California, USA). 2004}, booktitle = {Proceedings of the 12th Annual Medicine Meets Virtual Reality Conference: - Building a Better You: The Next Tools for Medical Education, Diagnosis, and Care. - Medicine Meets Virtual Reality (MMVR) - Newport Beach (California, USA). 2004}, language = {en} } @inproceedings{EgersdoerferSchummKessleretal., author = {Egersd{\"o}rfer, Stefan and Schumm, M. and Kessler, C. and Monkman, Gareth J. and B{\"o}se, Holger}, title = {Smart Fluids f{\"u}r die Schnittstelle Mensch-Maschine der Zukunft}, series = {International Mechatronik Forum, Linz}, booktitle = {International Mechatronik Forum, Linz}, pages = {421 -- 428}, language = {de} } @article{BoeseBaumannMonkmanetal., author = {B{\"o}se, Holger and Baumann, Michael and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Tunayar, A. and Freimuth, Herbert and Ermert, Helmut and Khaled, W.}, title = {A new ER fluid based haptic actuator system for virtual reality}, series = {International journal of modern physics / B Condensed matter physics, statistical physics}, volume = {19}, journal = {International journal of modern physics / B Condensed matter physics, statistical physics}, number = {7-9}, publisher = {World Scientific Publ.}, doi = {10.1142/9789812702197_0129 [Titel anhand dieser DOI in Citavi-Projekt {\"u}bernehmen]}, pages = {1628 -- 1634}, abstract = {The concept and some steps in the development of a new actuator system which enables the haptic perception of mechanically inhomogeneous virtual objects are introduced. The system consists of a two-dimensional planar array of actuator elements containing an electrorheological (ER) fluid. When a user presses his fingers onto the surface of the actuator array, he perceives locally variable resistance forces generated by vertical pistons which slide in the ER fluid through the gaps between electrode pairs. The voltage in each actuator element can be individually controlled by a novel sophisticated switching technology based on optoelectric gallium arsenide elements. The haptic information which is represented at the actuator array can be transferred from a corresponding sensor system based on ultrasonic elastography. The combined sensor-actuator system may serve as a technology platform for various applications in virtual reality, like telemedicine where the information on the consistency of tissue of a real patient is detected by the sensor part and recorded by the actuator part at a remote location.}, language = {en} } @article{MonkmanEgersdoerferMeieretal., author = {Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Meier, Alexander and B{\"o}se, Holger and Baumann, Michael and Ermert, Helmut and Kahled, W. and Freimuth, Herbert}, title = {Technologies for Haptic Displays in Teleoperation}, series = {Industrial Robot}, volume = {30}, journal = {Industrial Robot}, number = {6}, publisher = {Emerald}, issn = {0143-991x}, doi = {10.1108/01439910310506792}, pages = {525 -- 530}, abstract = {Since the 1960s many alphanumeric to tactile data conversion methods have been investigated, mainly with the ultimate aim of assisting the blind. More recently, interest has been directed toward the display of pictures on haptically explorable surfaces - tactile imaging - for a range of medical, remote sensing and entertainment purposes. This paper examines the technologies which have been utilised for haptically explorable tactile displays over the past three decades, focussing on those which appear commercially viable in the immediate future.}, language = {en} } @inproceedings{EgersdoerferZeidlerWieseretal., author = {Egersd{\"o}rfer, Stefan and Zeidler, A. and Wieser, A. and Trompier, F. and Monkman, Gareth J. and Shamonin (Chamonine), Mikhail}, title = {A portable accident dosimeter using tooth enamel}, series = {Proceedings of the 7th International Symposium on EPR Dosimetry and Applications and the 2nd International Conference on Biodosimetry held at the Uniformed Services University of the Health Sciences, Bethesda, MD, USA, 10-13 July 2006}, booktitle = {Proceedings of the 7th International Symposium on EPR Dosimetry and Applications and the 2nd International Conference on Biodosimetry held at the Uniformed Services University of the Health Sciences, Bethesda, MD, USA, 10-13 July 2006}, publisher = {Pergamon}, address = {Oxford}, language = {en} } @misc{HecknerKesslerEgersdoerferetal., author = {Heckner, T. and Kessler, C. and Egersd{\"o}rfer, Stefan and Monkman, Gareth J.}, title = {Computer based platform for tactile actuator analysis}, series = {Actuator 2006 : 10th International Conference on New Actuators and 4th International Exhibition on Smart Actuators and Drive Systems, Bremen, Germany, 14 - 16 June 2006}, journal = {Actuator 2006 : 10th International Conference on New Actuators and 4th International Exhibition on Smart Actuators and Drive Systems, Bremen, Germany, 14 - 16 June 2006}, publisher = {HVG Hanseatische Veranst.-GmbH}, language = {en} } @article{KleinRensinkFreimuthetal., author = {Klein, Dagmar and Rensink, D. and Freimuth, Herbert and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and B{\"o}se, Holger and Baumann, Michael}, title = {Modelling the Response of a Tactile Array using an Electrorheological Fluids}, series = {Journal of Physics D: Applied Physics}, volume = {37}, journal = {Journal of Physics D: Applied Physics}, number = {5}, publisher = {IOP Publ.}, address = {Bristol}, issn = {1361-6463}, doi = {10.1088/0022-3727/37/5/023}, pages = {794 -- 803}, abstract = {This paper reports the first step in the development of a tactile array suitable for the presentation of haptic information in virtual reality. The system is based on the electric field dependence of the viscosity of electrorheological fluids. The simulation, as well as the experimental realization of single tactels is described. The mathematical approach is based on the Eckart model (Eckart W 2000 Continuum Mech. Thermodyn. 12 341-62) and its validity is demonstrated by comparing the resulting yield stress with the experimental results from Wunderlich (2000 Dissertation Universit{\"a}t Erlangen-N{\"u}rnberg). Two different tactel designs are realized and the experimental results are compared with numerical simulation. The design of modification B is shown to be applicable for the realization of an actuator array with high spatial resolution.}, language = {en} } @techreport{RabindranathBoeseProbstetal., author = {Rabindranath, R. and B{\"o}se, Holger and Probst, J{\"o}rn and Schlunck, G. and Mayer, Matthias and Forster, Eva and Bentz, Alexander and Shamonin (Chamonine), Mikhail and Monkman, Gareth J.}, title = {EAP mit magnetisch steuerbarer Elastizit{\"a}t zur Interaktion mit Bindegewebszellen MagElan}, address = {Regensburg}, organization = {Hochschule f{\"u}r Angewandte Wissenschaften Regensburg / Fachbereich Elektro- und Informationstechnik}, pages = {37}, language = {de} } @inproceedings{BoeseErmertTunayaretal., author = {B{\"o}se, Holger and Ermert, Helmut and Tunayar, A. and Monkman, Gareth J. and Baumann, Michael and Kahled, W. and Reichling, S. and Bruhns, Otto T. and Freimuth, Herbert and Egersd{\"o}rfer, Stefan}, title = {A Novel Haptic Sensor-Actuator System for Applications in Virtual Reality}, series = {BMBF-Tagung, Leipzig 19.10 February 2004}, booktitle = {BMBF-Tagung, Leipzig 19.10 February 2004}, language = {en} } @article{KleinFreimuthMonkmanetal., author = {Klein, Dagmar and Freimuth, Herbert and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Meier, Alexander and B{\"o}se, Holger and Baumann, Michael and Ermert, Helmut and Bruhns, Otto T.}, title = {Electrorheological Tactile Elements}, series = {Mechatronics}, volume = {15}, journal = {Mechatronics}, number = {7}, publisher = {Pergamon}, address = {Oxford}, doi = {10.1016/j.mechatronics.2004.05.007}, pages = {883 -- 897}, abstract = {The use of ultrasound systems for medical examination and diagnosis is nothing new. The extension of ultrasound techniques for real time elastographic analysis purposes represents a more recent development. Nevertheless, as they stand all such techniques rely on the interpretation of two-dimensional visual data displayed on a video screen. In reality however, a medical doctor will make as much use of exploratory touch as he or she does vision, making the simultaneous portrayal of both video and tactile information most desirable [B{\"o}se H, Monkman GJ, Freimuth H, Ermert H. Haptisches Sensor-Aktor-System uaf der grundlage der Echtzeitelastographie sowie von elktro- und magnetorheologischen Materialien "HASASEM" [3]. BMBF Antrag 01 IR A14D, Oktober 2000]. This paper discusses the preliminary tests and basic design parameters for single tactels using electrorheological fluids. The final aim is to produce a prototype three-dimensional tactile display comprising electrically switchable micro-machined cells whose mechanical moduli are governed by phase changes experienced by electrorheological fluids. This will be integrated with the latest elastographic ultrasonic sensor systems in order to present the human fingers with controllable surfaces capable of emulating biological tissue, muscle and bone.}, language = {en} } @incollection{KahledReichlingBruhnsetal., author = {Kahled, W. and Reichling, S. and Bruhns, Otto T. and B{\"o}se, Holger and Baumann, Michael and Egersd{\"o}rfer, Stefan and Klein, Dagmar and Tunayer, A. and Freimuth, Herbert and Lorenz, A. and Pessavento, A. and Ermert, Helmut}, title = {Palpation Imaging using a Haptic System for Virtual Reality applications in Medicine}, series = {Medicine meets virtual reality 12}, booktitle = {Medicine meets virtual reality 12}, editor = {Westwood, James D. and Haluck, Randy S.}, publisher = {IOS Press}, pages = {147 -- 153}, language = {en} } @inproceedings{BoeseErmertTunayaretal., author = {B{\"o}se, Holger and Ermert, Helmut and Tunayar, A. and Monkman, Gareth J. and Baumann, Michael and Kahled, W. and Reichling, S. and Bruhns, Otto T. and Freimuth, Herbert and Egersd{\"o}rfer, Stefan}, title = {A novel haptic sensor-actuator system for virtual reality}, series = {Eurohaptics 2004, Munich, Germany, June 5 - 7, 2004 Proceedings of the 4th International Conference EuroHaptics 2004 ; June 5 - 7, 2004, M{\"u}nchen, Germany}, booktitle = {Eurohaptics 2004, Munich, Germany, June 5 - 7, 2004 Proceedings of the 4th International Conference EuroHaptics 2004 ; June 5 - 7, 2004, M{\"u}nchen, Germany}, publisher = {Inst. of Automatic Control Engineering}, address = {M{\"u}nchen}, isbn = {3-9809614-0-0}, language = {en} } @article{BoeseMonkmanFreimuthetal., author = {B{\"o}se, Holger and Monkman, Gareth J. and Freimuth, Herbert and Tunayar, A. and Khaled, W. and Baumann, Michael and Egersd{\"o}rfer, Stefan and Ermert, Helmut}, title = {A new haptic sensor-actuator system based on electrorheological fluids}, series = {Actuator 2004 : 9th International Conference on New Actuators \& 3rd International Exhibition on Smart Actuators and Drive Systems ; Bremen, Germany, 14 - 16 June 2004}, journal = {Actuator 2004 : 9th International Conference on New Actuators \& 3rd International Exhibition on Smart Actuators and Drive Systems ; Bremen, Germany, 14 - 16 June 2004}, publisher = {HVG Hanseatische Veranstaltungs-GmbH}, address = {Bremen}, language = {en} } @inproceedings{BoeseMonkmanFreimuthetal., author = {B{\"o}se, Holger and Monkman, Gareth J. and Freimuth, Herbert and Klein, Dagmar and Ermert, Helmut and Baumann, Michael and Egersd{\"o}rfer, Stefan and Bruhns, Otto T.}, title = {ER Fluid Based Haptic System for Virtual Reality}, series = {Actuator 2002 : 8th International Conference on New Actuators \& 2nd International Exhibition on Smart Actuators and Drive Systems ; Bremen, Germany, 10 - 12 June 2002}, booktitle = {Actuator 2002 : 8th International Conference on New Actuators \& 2nd International Exhibition on Smart Actuators and Drive Systems ; Bremen, Germany, 10 - 12 June 2002}, edition = {CD-ROM}, pages = {351 -- 354}, language = {en} } @article{HirmerDanilovGiglbergeretal., author = {Hirmer, Marion and Danilov, Sergey N. and Giglberger, Stephan and Putzger, J{\"u}rgen and Niklas, Andreas and J{\"a}ger, Andreas and Hiller, Karl-Anton and Schmalz, Gottfried and Redlich, Britta and Schulz, Irene and Monkman, Gareth J. and Ganichev, Sergey D.}, title = {Spectroscopic Study of Human Teeth and Blood from Visible to Terahertz Frequencies for Clinical Diagnosis of Dental Pulp Vitality}, series = {Journal of Infrared, Millimeter, and Terahertz Waves}, volume = {33}, journal = {Journal of Infrared, Millimeter, and Terahertz Waves}, publisher = {Springer}, issn = {1866-6906}, doi = {10.1007/s10762-012-9872-3}, pages = {366 -- 375}, abstract = {Transmission spectra of wet human teeth and dentin slices, together with blood of different flow rates were investigated. The measurements carried out over a wide spectral range, from visible light down to terahertz radiation. The results make it possible to find the optimum light frequency for an all-optical determination of pulpal blood flow and, consequently, for clinically diagnosis of tooth vitality.}, language = {en} } @misc{HesseMonkmanSteinmannetal., author = {Hesse, Stefan and Monkman, Gareth J. and Steinmann, Ralf and Schunk, Henrik}, title = {Robotergreifer}, publisher = {Hanser}, address = {M{\"u}nchen ; Wien}, isbn = {978-3-446-22920-4}, pages = {IX, 436 S.}, language = {de} } @article{KhaledErmertBruhnsetal., author = {Khaled, W. and Ermert, Helmut and Bruhns, Otto T. and Reichling, S. and B{\"o}se, Holger and Baumann, Michael and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Meier, Alexander and Klein, Dagmar and Freimuth, Herbert}, title = {Haptic sensor-actuator-system based on ultrasound elastography and electrorheological fluids for virtual reality applications in medicine}, series = {Studies in health technology and informatics, Medicine Meets Virtual Reality (MMVR)}, volume = {11}, journal = {Studies in health technology and informatics, Medicine Meets Virtual Reality (MMVR)}, number = {94}, publisher = {IOS Press}, pages = {144 -- 150}, abstract = {Mechanical properties of biological tissue represent important diagnostic information and are of histological relevance (hard lesions, "nodes" in organs: tumors; calcifications in vessels: arteriosclerosis). The problem is, that such information is usually obtained by digital palpation only, which is limited with respect to sensitivity. It requires intuitive assessment and does not allow quantitative documentation. A suitable sensor is required for quantitative detection of mechanical tissue properties. On the other hand, there is also some need for a realistic mechanical display of those tissue properties. Suitable actuator arrays with high spatial resolution and real-time capabilities are required operating in a haptic sensor actuator system with different applications. The sensor system uses real time ultrasonic elastography whereas the tactile actuator is based on electrorheological fluids. Due to their small size the actuator array elements have to be manufactured by micro-mechanical production methods. In order to supply the actuator elements with individual high voltages a sophisticated switching and control concept have been designed. This haptic system has the potential of inducing real time substantial forces, using a compact lightweight mechanism which can be applied to numerous areas including intraoperative navigation, telemedicine, teaching, space and telecommunication.}, language = {de} } @inproceedings{KhaledBruhnsReichlingetal., author = {Khaled, W. and Bruhns, Otto T. and Reichling, S. and B{\"o}se, Holger and Baumann, Michael and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Meier, Alexander and Freimuth, Herbert and Tunayar, A. and Ermert, Helmut}, title = {A New Haptic Sensor Actuator System for Virtual Reality Applications in Medicine}, series = {Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003: 6th International Conference, Montr{\´e}al, Canada, November 15-18, 2003, Proceedings}, booktitle = {Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003: 6th International Conference, Montr{\´e}al, Canada, November 15-18, 2003, Proceedings}, publisher = {Springer}, isbn = {978-3540204626}, pages = {132 -- 140}, language = {en} } @inproceedings{SchummSchwarzWahleretal., author = {Schumm, M. and Schwarz, E. and Wahler, D. and Jayaprakash, S. N. and Monkman, Gareth J.}, title = {The Trilopede}, series = {Informatics Microsystems Information Systems Preceedings}, volume = {1}, booktitle = {Informatics Microsystems Information Systems Preceedings}, number = {1}, publisher = {Moscow State Technical University}, language = {en} } @inproceedings{BoeseMonkmanFreimuthetal., author = {B{\"o}se, Holger and Monkman, Gareth J. and Freimuth, Herbert and Tunayar, A. and Ermert, Helmut and Khaled, W. and Baumann, Michael and Egersd{\"o}rfer, Stefan}, title = {A new ER fluid based haptic actuator system for virtual reality}, series = {Proceedings of the Ninth International Conference Electrorheological Fluids and Magnetorheological Suspensions (ERMR 2004) : Beijing, China, 29 August - 3 September 2004}, booktitle = {Proceedings of the Ninth International Conference Electrorheological Fluids and Magnetorheological Suspensions (ERMR 2004) : Beijing, China, 29 August - 3 September 2004}, publisher = {World Scientific}, address = {Singapore}, pages = {889 -- 895}, language = {en} } @article{KhaledBruhnsReichlingetal., author = {Khaled, W. and Bruhns, Otto T. and Reichling, S. and B{\"o}se, Holger and Baumann, Michael and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Meier, Alexander and Klein, Dagmar and Freimuth, Herbert and Ermert, Helmut}, title = {A haptic system for virtual reality applications based on ultrasound elastography and electrorheological fluids}, series = {Acoustical Imaging}, journal = {Acoustical Imaging}, number = {27}, publisher = {Kluver Academic}, address = {Dordrecht \& New York}, doi = {10.1007/978-1-4020-2402-3_85}, pages = {667 -- 675}, language = {en} } @inproceedings{OoiLeeSchubertetal., author = {Ooi, Boon Yaik and Lee, Wai-Kong and Schubert, Martin J. W. and Ooi, Yu-Wei and Chin, Chee-Yang and Woo, Wing-Hon}, title = {A Flexible and Reliable Internet-of-Things Solution for Real-Time Production Tracking}, series = {IEEE Industrial Electronics and Applications Conference (IEACon): 22.11.2021 - 23.11.2021, Penang, Malaysia}, booktitle = {IEEE Industrial Electronics and Applications Conference (IEACon): 22.11.2021 - 23.11.2021, Penang, Malaysia}, publisher = {IEEE}, isbn = {978-1-7281-9253-6}, doi = {10.1109/IEACon51066.2021.9654672}, pages = {270 -- 275}, abstract = {The concept of Industrial Revolution 4.0 (IR4.0) has sparked the urgency of many manufacturers to revisit their manufacturing processes and search for opportunities to further improved their production output. Unfortunately, it is difficult to improve a process with inadequate data. Many of the SMEs in developing countries are still using manufacturing machines from the yesteryears which do not have computational and connectivity capabilities. Therefore, we developed an end-to-end Internet-of-Things (IoT) solution, which reliably tracks the production performance of manufacturing machines. This paper elaborates on the designs and the rationale behind it. As of the writing of this paper, our IoT system has been deployed in real manufacturing environment and has been running for approximately 90 days on a 24/7 basis without data lost.}, language = {en} } @inproceedings{ForsterMayerRabindranathetal., author = {Forster, Eva and Mayer, Matthias and Rabindranath, R. and Bentz, Alexander and B{\"o}se, Holger and Shamonin (Chamonine), Mikhail and Monkman, Gareth J.}, title = {Surface Control Magneto-Active Polymers (MAP)}, series = {EuroEAP 2011, First international conference on Electromechanically Active Polymer (EAP) transducers \& artificial muscles, Pisa, 8-9 June}, booktitle = {EuroEAP 2011, First international conference on Electromechanically Active Polymer (EAP) transducers \& artificial muscles, Pisa, 8-9 June}, abstract = {Smart materials change their properties with external energy supply. Besides the known ferro-fluids and Magneto Rheological Fluid (MRF) also the Electro Active Polymer (EAP) and Magneto Rheological Elastomer (MRE) belong to these intelligent materials. The latest generation of magnetic elastomers represents a new class of composite materials. This consists of small magnetized particles which are sized in the micron or even nanometer range that in turn is bounded in a highly elastic rubber matrix. These materials are very often called MRE. Only recently, it has managed to develop these materials even further, so that very soft composite materials with a young?s modulus up to 10 kPa are possible. These soft polymers could be named magneto-active polymers. The combination of polymers with magnetic materials show novel and often enhanced properties. A precisely controllable young?s modulus and hardness, giant and non-homogeneous deformation behavior and rapid response to the magnetic field opens up new possibilities for various applications. Since MAP represent a very new technology, the behavior of these materials as a function of their composition and external conditions so far are not yet sufficiently understood. Therefore, some fundamental studies are necessary. In this paper, the mechanical surface properties are studied using a micro hardness meter. This work shows the possibility to control mechanical properties at the surface of MAP with new developed magnetic systems.}, language = {en} } @inproceedings{PohltSchleglWachsmuth, author = {Pohlt, Clemens and Schlegl, Thomas and Wachsmuth, Sven}, title = {Weakly-Supervised Learning for Multimodal Human Activity Recognition in Human-Robot Collaboration Scenarios}, series = {2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): October 25-29, 2020, Las Vegas, NV, USA (virtual)}, booktitle = {2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): October 25-29, 2020, Las Vegas, NV, USA (virtual)}, publisher = {IEEE}, doi = {10.1109/IROS45743.2020.9340788}, pages = {8381 -- 8386}, abstract = {The ability to synchronize expectations among human-robot teams and understand discrepancies between expectations and reality is essential for human-robot collaboration scenarios. To ensure this, human activities and intentions must be interpreted quickly and reliably by the robot using various modalities. In this paper we propose a multimodal recognition system designed to detect physical interactions as well as nonverbal gestures. Existing approaches feature high post-transfer recognition rates which, however, can only be achieved based on well-prepared and large datasets. Unfortunately, the acquisition and preparation of domain-specific samples especially in industrial context is time consuming and expensive. To reduce this effort we introduce a weakly-supervised classification approach. Therefore, we learn a latent representation of the human activities with a variational autoencoder network. Additional modalities and unlabeled samples are incorporated by a scalable product-of-expert sampling approach. The applicability in industrial context is evaluated by two domain-specific collaborative robot datasets. Our results demonstrate, that we can keep the number of labeled samples constant while increasing the network performance by providing additional unprocessed information.}, language = {en} } @inproceedings{PohltSchleglWachsmuth, author = {Pohlt, Clemens and Schlegl, Thomas and Wachsmuth, Sven}, title = {Human Work Activity Recognition for Working Cells in Industrial Production Contexts}, series = {2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 6-9 Oct. 2019, Bari, Italy}, booktitle = {2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 6-9 Oct. 2019, Bari, Italy}, doi = {10.1109/SMC.2019.8913873}, pages = {4225 -- 4230}, abstract = {Collaboration between robots and humans requires communicative skills on both sides. The robot has to understand the conscious and unconscious activities of human workers. Many state-of-the-art activity recognition algorithms with high performance rates on existing benchmark datasets are available for this task. This paper re-evaluates appropriate architectures in light of human work activity recognition for working cells in industrial production contexts. The specific constraints of such a domain is elaborated and used as prior knowledge. We utilize state-of-the-art algorithms as spatiotemporal feature encoders and search for appropriate classification and fusion strategies. Furthermore, we combine keypoint-based with appearance-based approaches to a multi-stream recognition system. Due to data protection rules and the high effort of data annotation within industrial domains only small datasets are available that reflect production aspects. Therefore, we use transfer learning approaches to reduce the dependency on data volume and variance in the target domain. The resulting recognition system achieves high performance for both singular person action and human-object interaction.}, language = {en} } @article{BakaevSnarskiiShamoninChamonine, author = {Bakaev, V. V. and Snarskii, Andrei A. and Shamonin (Chamonine), Mikhail}, title = {The permeability and remanent magnetization of a randomly inhomogeneous two-phase medium}, series = {Technical Physics}, volume = {47}, journal = {Technical Physics}, publisher = {Springer}, doi = {10.1134/1.1435901}, pages = {125 -- 128}, abstract = {A randomly inhomogeneous composite consisting of two, ferromagnetic and nonmagnetic (para-or diamagnetic), phases is considered. The dependence of the effective permeability of the composite on the concentration of the ferromagnetic phase and on the applied magnetic field is found for the case of the negligible hysteresis loop. When the hysteresis loop is appreciable, the remanent magnetization as a function of the ferromagnet concentration is calculated.}, language = {en} } @article{SnarskiiZhenirovskyyShamoninChamonine, author = {Snarskii, Andrei A. and Zhenirovskyy, M. I. and Shamonin (Chamonine), Mikhail}, title = {The effective properties of macroscopically nonuniform ferromagnetic composites: Theory and numerical experiment}, series = {Journal of Experimental and Theoretical Physics}, volume = {96}, journal = {Journal of Experimental and Theoretical Physics}, publisher = {Springer}, doi = {10.1134/1.1545385}, pages = {66 -- 77}, abstract = {Various theoretical models (self-consistent field, local linearization, and percolation theory methods and an analytic solution of the linear problem for an ordered medium) for calculating the magnetostatic properties of two-phase composites containing one ferromagnetic phase were considered. The concentration and field dependences of the effective magnetic permeability were found. A method for determining the coercive force and remanent magnetization as functions of the ferromagnetic phase concentration was suggested. Numerical experiments were performed for composites with a periodic distribution of circular inclusions. The results were compared with the analytically calculated effective magnetic permeability.}, language = {en} } @article{ShamoninChamonineSnarskiiZhenirovskyy, author = {Shamonin (Chamonine), Mikhail and Snarskii, Andrei A. and Zhenirovskyy, M. I.}, title = {Effective magnetic permeability of ferromagnetic composites. Theoretical description and comparison with experiment}, series = {NDT \& E International}, volume = {37}, journal = {NDT \& E International}, number = {1}, publisher = {Elsevier}, doi = {10.1016/j.ndteint.2003.08.001}, pages = {35 -- 40}, abstract = {Two analytical methods based on the so-called local linearization of magnetostatic properties of composite materials with ferromagnetic inclusions in a non-magnetic matrix are described. These methods are applied to the experimental data obtained in Gorkunov et al. [Russ. J. Nondestruct. Test. 3 (2001) 186]. A qualitative agreement is obtained for the concentration values reported in that paper and a quantitative agreement is achieved at slightly different value of concentration. The conclusions are supported by direct numerical modeling.}, language = {en} } @article{FilippovRinghoferShamoninChamonineetal., author = {Filippov, O. and Ringhofer, K. H. and Shamonin (Chamonine), Mikhail and Shamonina, Ekaterina and Kamshilin, A. A. and Nippolainen, E. and Sturman, B. I.}, title = {Polarization properties of light-induced scattering in Bi12TiO20 crystals: theory and experiment for diagonal geometry}, series = {Journal of the Optical Society of America B}, volume = {20}, journal = {Journal of the Optical Society of America B}, number = {4}, publisher = {Optica Publishing Group}, doi = {10.1364/JOSAB.20.000677}, pages = {677 -- 684}, abstract = {Illumination of ac-biased photorefractive Bi12TiO20 crystals with a coherent light beam results in the development of strong nonlinear scattering. Theoretically and experimentally we investigate the angular and polarization characteristics of the scattered light for the diagonal ([1̲1̲1]) optical configuration and different polarization states of the pump. A satisfactory understanding of the observed scattering properties is achieved for most of the cases investigated.}, language = {en} } @article{LukyanetsSnarskiiShamoninChamonineetal., author = {Lukyanets, S. and Snarskii, Andrei A. and Shamonin (Chamonine), Mikhail and Bakaev, V. V.}, title = {Calculation of magnetic leakage field from a surface defect in a linear ferromagnetic material: an analytical approach}, series = {NDT \& E International}, volume = {36}, journal = {NDT \& E International}, number = {1}, publisher = {Elsevier}, doi = {10.1016/S0963-8695(02)00071-3}, pages = {51 -- 55}, abstract = {A novel analytical approach for calculating the magnetic leakage field from surface defects is proposed and demonstrated for the case of a linear ferromagnetic material. The novelty of the theory is that it relates the distribution of induced magnetic charges to the surface shape. An excellent agreement between the analytical and numerical results is shown. The functional relations between different magnetic field components are discussed.}, language = {en} } @article{SnarskiiShamoninChamonineZhenirovskyy, author = {Snarskii, Andrei A. and Shamonin (Chamonine), Mikhail and Zhenirovskyy, M. I.}, title = {Effective properties of macroscopically non-uniform ferromagnetic composite materials}, series = {Zhurnal Eksperimental'noj i Teoreticheskoj Fiziki - Journal of Experimental and Theoretical Physics (JETP)}, volume = {123}, journal = {Zhurnal Eksperimental'noj i Teoreticheskoj Fiziki - Journal of Experimental and Theoretical Physics (JETP)}, number = {1}, publisher = {Akademija Nauk SSSR}, address = {Moscow}, pages = {79 -- 92}, language = {en} } @incollection{SchrimerPutzMonkman, author = {Schrimer, M and Putz, C. and Monkman, Gareth J.}, title = {Boron-Silicone-Oxide Polymers}, series = {Boron: advances in research and applications}, booktitle = {Boron: advances in research and applications}, editor = {McConnell, Lynn}, publisher = {Nova Science Publishers}, address = {New York, NY}, isbn = {9781685072315}, doi = {10.52305/AFKU5564}, pages = {117 -- 179}, language = {en} } @inproceedings{SchubertHoefflingerZingg, author = {Schubert, Martin J. W. and H{\"o}fflinger, Bernd and Zingg, Ren{\´e} P.}, title = {A New Analytical Charge Model for the Dual-Gate-Controlled Thin-Film SOI MOSFET}, series = {Superlattices and Microstructures}, volume = {7}, booktitle = {Superlattices and Microstructures}, number = {4}, publisher = {Elsevier}, doi = {10.1016/0749-6036(90)90218-V}, pages = {323 -- 326}, abstract = {An analytical model for dual-gate-controlled SOI MOSFETs is presented, assuming uniformly doped p-silicon films. It is restricted to electron inversion layers and depletion regions, neglecting hole densities. It allows to account for the spatial description of electronic quantities in the silicon film. Due to the non-linearities of the semiconductor equations the model parameters must be extracted iteratively. Some applications are presented to demonstrate the usefulness of the model.}, language = {en} }