@article{LingelHausPaschkeetal., author = {Lingel, Maximilian P. and Haus, Moritz and Paschke, Lukas and Foltan, Maik and Lubnow, Matthias and Gruber, Michael and Krenkel, Lars and Lehle, Karla}, title = {Clinical relevance of cell-free DNA during venovenous extracorporeal membrane oxygenation}, series = {Artificial organs}, volume = {47}, journal = {Artificial organs}, number = {11}, publisher = {Wiley}, issn = {1525-1594}, doi = {10.1111/aor.14616}, pages = {1720 -- 1731}, abstract = {BACKGROUND: Thrombosis remains a critical complication during venovenous extracorporeal membrane oxygenation (VV ECMO). The involvement of neutrophil extracellular traps (NETs) in thrombogenesis has to be discussed. The aim was to verify NETs in the form of cell-free DNA (cfDNA) in the plasma of patients during ECMO. METHODS: A fluorescent DNA-binding dye (QuantifFluor®, Promega) was used to detect cell-free DNA in plasma samples. cfDNA concentrations from volunteers (n = 21) and patients (n = 9) were compared and correlated with clinical/technical data before/during support, ECMO end and time of a system exchange. RESULTS: Before ECMO, patients with a median (IQR) age of 59 (51/63) years, SOFA score of 11 (10/15), and ECMO run time of 9.0 (7.0/19.5) days presented significantly higher levels of cfDNA compared to volunteers (6.4 (5.8/7.9) ng/μL vs. 5.9 (5.4/6.3) ng/μL; p = 0.044). Within 2 days after ECMO start, cfDNA, inflammatory, and hemolysis parameters remained unchanged, while platelets decreased (p = 0.005). After ECMO removal at the end of therapy, cfDNA, inflammation, and coagulation data (except antithrombin III) remained unchanged. The renewal of a system resulted in known alterations in fibrinogen, d-dimers, and platelets, while cfDNA remained unchanged. CONCLUSION: Detection of cfDNA in plasma of ECMO patients was not an indicator of acute and circuit-induced thrombogenesis.}, language = {en} } @article{RueckertRueckertPalm, author = {R{\"u}ckert, Tobias and R{\"u}ckert, Daniel and Palm, Christoph}, title = {Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art}, series = {Computers in Biology and Medicine}, volume = {169}, journal = {Computers in Biology and Medicine}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.compbiomed.2024.107929}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-69830}, pages = {24}, abstract = {In the field of computer- and robot-assisted minimally invasive surgery, enormous progress has been made in recent years based on the recognition of surgical instruments in endoscopic images and videos. In particular, the determination of the position and type of instruments is of great interest. Current work involves both spatial and temporal information, with the idea that predicting the movement of surgical tools over time may improve the quality of the final segmentations. The provision of publicly available datasets has recently encouraged the development of new methods, mainly based on deep learning. In this review, we identify and characterize datasets used for method development and evaluation and quantify their frequency of use in the literature. We further present an overview of the current state of research regarding the segmentation and tracking of minimally invasive surgical instruments in endoscopic images and videos. The paper focuses on methods that work purely visually, without markers of any kind attached to the instruments, considering both single-frame semantic and instance segmentation approaches, as well as those that incorporate temporal information. The publications analyzed were identified through the platforms Google Scholar, Web of Science, and PubMed. The search terms used were "instrument segmentation", "instrument tracking", "surgical tool segmentation", and "surgical tool tracking", resulting in a total of 741 articles published between 01/2015 and 07/2023, of which 123 were included using systematic selection criteria. A discussion of the reviewed literature is provided, highlighting existing shortcomings and emphasizing the available potential for future developments.}, subject = {Deep Learning}, language = {en} } @article{RueweEigenbergerKleinetal., author = {Ruewe, Marc and Eigenberger, Andreas and Klein, Silvan and von Riedheim, Antonia and Gugg, Christine and Prantl, Lukas and Palm, Christoph and Weiherer, Maximilian and Zeman, Florian and Anker, Alexandra}, title = {Precise Monitoring of Returning Sensation in Digital Nerve Lesions by 3-D Imaging: A Proof-of-Concept Study}, series = {Plastic and Reconstructive Surgery}, volume = {152}, journal = {Plastic and Reconstructive Surgery}, number = {4}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia, Pa.}, organization = {American Society of Plastic Surgeons}, issn = {1529-4242}, doi = {10.1097/PRS.0000000000010456}, pages = {670e -- 674e}, abstract = {Digital nerve lesions result in a loss of tactile sensation reflected by an anesthetic area (AA) at the radial or ulnar aspect of the respective digit. Yet, available tools to monitor the recovery of tactile sense have been criticized for their lack of validity. However, the precise quantification of AA dynamics by three-dimensional (3-D) imaging could serve as an accurate surrogate to monitor recovery following digital nerve repair. For validation, AAs were marked on digits of healthy volunteers to simulate the AA of an impaired cutaneous innervation. Three dimensional models were composed from raw images that had been acquired with a 3-D camera (Vectra H2) to precisely quantify relative AA for each digit (3-D models, n= 80). Operator properties varied regarding individual experience in 3-D imaging and image processing. Additionally, the concept was applied in a clinical case study. Images taken by experienced photographers were rated better quality (p< 0.001) and needed less processing time (p= 0.020). Quantification of the relative AA was neither altered significantly by experience levels of the photographer (p= 0.425) nor the image assembler (p= 0.749). The proposed concept allows precise and reliable surface quantification of digits and can be performed consistently without relevant distortion by lack of examiner experience. Routine 3-D imaging of the AA has the great potential to provide visual evidence of various returning states of sensation and to convert sensory nerve recovery into a metric variable with high responsiveness to temporal progress.}, language = {en} } @misc{MarkovGlazerSchliermann, author = {Markov-Glazer, Alon and Schliermann, Rainer}, title = {Sport psychological Skills Training (PST) in Elite Deaf Sport}, series = {The 23rd International Symposium of Adapted Physical Activity (Online ISAPA 2021) and the Nordic Congress of Adapted Physical Activity: 15th-18th June 2021, Jyv{\"a}skyl{\"a}, Finland}, journal = {The 23rd International Symposium of Adapted Physical Activity (Online ISAPA 2021) and the Nordic Congress of Adapted Physical Activity: 15th-18th June 2021, Jyv{\"a}skyl{\"a}, Finland}, editor = {Ng, K. and Rintala, P. and Kandzia, A. and Lindeman, A.}, publisher = {University of Jyv{\"a}skyl{\"a}}, address = {Jyv{\"a}skyl{\"a}}, pages = {57}, language = {en} } @inproceedings{MarkovGlazerSchliermann, author = {Markov-Glazer, Alon and Schliermann, Rainer}, title = {Psychological skills and techniques utility patterns in elite deaf sport}, series = {International Society of Sport Psychology (ISSP), 15th World Congress, Proceedings, 30th September - 4th October 2021, Taipeh, China}, booktitle = {International Society of Sport Psychology (ISSP), 15th World Congress, Proceedings, 30th September - 4th October 2021, Taipeh, China}, editor = {Schinke, Robert and Chang, Yu-Kai}, publisher = {Routledge}, pages = {236 -- 237}, language = {en} } @article{TauwaldErzingerQuadrioetal., author = {Tauwald, Sandra Melina and Erzinger, Florian and Quadrio, Maurizio and R{\"u}tten, Markus and Stemmer, Christian and Krenkel, Lars}, title = {Tomo-PIV in a patient-specific model of human nasal cavities: a methodological approach}, series = {Measurement Science and Technology}, volume = {35}, journal = {Measurement Science and Technology}, number = {5}, publisher = {IOP Publishing}, doi = {10.1088/1361-6501/ad282c}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-70393}, abstract = {The human nose serves as the primary gateway for air entering the respiratory system and plays a vital role in breathing. Nasal breathing difficulties are a significant health concern, leading to substantial healthcare costs for patients. Understanding nasal airflow dynamics is crucial for comprehending respiratory mechanisms. This article presents a detailed study using tomo-Particle Image Velocimetry (PIV) to investigate nasal airflow dynamics while addressing its accuracy. Embedded in the OpenNose project, the work described aims to provide a validation basis for different numerical approaches to upper airway flow. The study includes the manufacturing of a transparent silicone model based on a clinical CT scan, refractive index matching to minimize optical distortions, and precise flow rate adjustments based on physiological breathing cycles. This method allows for spatial high-resolution investigations in different regions of interest within the nasopharynx during various phases of the breathing cycle. The results demonstrate the accuracy of the investigations, enabling detailed analysis of flow structures and gradients. This spatial high-resolution tomo-PIV approach provides valuable insights into the complex flow phenomena occurring during the physiological breathing cycle in the nasopharynx. The study's findings contribute to advancements in non-free-of-sight experimental flow investigation of complex cavities under nearly realistic conditions. Furthermore, reliable and accurate experimental data is crucial for properly validating numerical approaches that compute this patient-specific flow for clinical purposes.}, language = {en} } @article{TauwaldMichelBrandtetal., author = {Tauwald, Sandra Melina and Michel, Johanna and Brandt, Marie and Vielsmeier, Veronika and Stemmer, Christian and Krenkel, Lars}, title = {Experimental studies and mathematical modeling of the viscoelastic rheology of tracheobronchial mucus from respiratory healthy patients}, series = {Multidisciplinary Respiratory Medicine}, volume = {18}, journal = {Multidisciplinary Respiratory Medicine}, number = {1}, publisher = {PAGEPress}, address = {Pavia, Italy}, issn = {2049-6958}, doi = {10.4081/mrm.2023.923}, pages = {12}, abstract = {BACKGROUND: Tracheobronchial mucus plays a crucial role in pulmonary function by providing protection against inhaled pathogens. Due to its composition of water, mucins, and other biomolecules, it has a complex viscoelastic rheological behavior. This interplay of both viscous and elastic properties has not been fully described yet. In this study, we characterize the rheology of human mucus using oscillatory and transient tests. Based on the transient tests, we describe the material behavior of mucus under stress and strain loading by mathematical models. METHODS: Mucus samples were collected from clinically used endotracheal tubes. For rheological characterization, oscillatory amplitude-sweep and frequency-sweep tests, and transient creep-recovery and stress-relaxation tests were performed. The results of the transient test were approximated using the Burgers model, the Weibull distribution, and the six-element Maxwell model. The three-dimensional microstructure of the tracheobronchial mucus was visualized using scanning electron microscope imaging. RESULTS: Amplitude-sweep tests showed storage moduli ranging from 0.1 Pa to 10000 Pa and a median critical strain of 4 \%. In frequency-sweep tests, storage and loss moduli increased with frequency, with the median of the storage modulus ranging from 10 Pa to 30 Pa, and the median of the loss modulus from 5 Pa to 14 Pa. The Burgers model approximates the viscoelastic behavior of tracheobronchial mucus during a constant load of stress appropriately (R2 of 0.99), and the Weibull distribution is suitable to predict the recovery of the sample after the removal of this stress (R2 of 0.99). The approximation of the stress-relaxation test data by a six-element Maxwell model shows a larger fit error (R2 of 0.91). CONCLUSIONS: This study provides a detailed description of all process steps of characterizing the rheology of tracheobronchial mucus, including sample collection, microstructure visualization, and rheological investigation. Based on this characterization, we provide mathematical models of the rheological behavior of tracheobronchial mucus. These can now be used to simulate mucus flow in the respiratory system through numerical approaches.}, language = {en} } @inproceedings{TauwaldQuadrioRuettenetal., author = {Tauwald, Sandra Melina and Quadrio, Maurizio and R{\"u}tten, Markus and Stemmer, Christian and Krenkel, Lars}, title = {High Spatial Resolution Tomo-PIV of the Trachea Focussing on the Physiological Breathing Cycle}, series = {New Results in Numerical and Experimental Fluid Mechanics XIV - Contributions to the 23nd STAB/DGLR Symposium}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics XIV - Contributions to the 23nd STAB/DGLR Symposium}, publisher = {Springer}, abstract = {Investigations of complex patient-specific flow in the nasopharynx requires high resolution numerical calculations validated by reliable experiments. When building the validation base and the benchmark of computational fluid dynamics, an experimental setup of the nasal airways was developed. The applied optical measurement technique of tomo-PIV supplies information on the governing flow field in three dimensions. This paper presents tomo-PIV measurements of the highly complex patient-specific geometry of the human trachea. A computertomographic scan of a person's head builds the basis of the experimental silicone model of the nasal airways. An optimised approach for precise refractive index matching avoids optical distortions even in highly complex non-free-of-sight 3D geometries. A linear-motor-driven pump generates breathing scenarios, based on measured breathing cycles. Adjusting of the CCD cameras' double-frame-rate PIV-Δt enables the detailed analysis of flow structures during different cycle phases. Merging regions of interest enables high spatial resolution acquisition of the flow field.}, language = {en} } @inproceedings{Fuhrmann, author = {Fuhrmann, Thomas}, title = {Semi-Structured Lab Projects in Communication Engineering Education}, series = {2023 IEEE Global Engineering Education Conference (EDUCON), 01-04 May 2023, Kuwait}, booktitle = {2023 IEEE Global Engineering Education Conference (EDUCON), 01-04 May 2023, Kuwait}, publisher = {IEEE}, doi = {10.1109/EDUCON54358.2023.10125244}, pages = {1 -- 5}, abstract = {It is generally known that project-based learning is a very important part of engineering education to connect theoretical knowledge with practical work. Students learn to apply their knowledge to real-world challenges as it is the case in their later professional life. If students are not used to project work or the scientific topic is new and relatively complex, they may be overwhelmed. The consequence is that students achieve poor results, are frustrated, and therefore learning success is low. Semi-structured projects are introduced that combine the advantages of structured experiments with projects. The project work is structured into several parts with detailed descriptions of the tasks. In the end, students get similar results to doing a free project, but the success rate is higher due to higher guidance. Therefore, these semi-structured projects are seen to be an appropriate method to guide students to learn how to do project work. The feedback from most students is very positive. Some students with no previous lab experience complained about the project work and wished for more guidance to become familiar with lab work. In sum, the student feedback is encouraging to develop semi-structured projects further.}, language = {en} } @inproceedings{WestnerFuhrmannWaasetal., author = {Westner, Markus and Fuhrmann, Thomas and Waas, Thomas and Skelton, David}, title = {Internationalization of a Computer Science Faculty}, series = {9th Annual International Conference on Computer Science Education: Innovation and Technology (CSEIT 2018), 2018, Singapore}, booktitle = {9th Annual International Conference on Computer Science Education: Innovation and Technology (CSEIT 2018), 2018, Singapore}, doi = {10.5176/2251-2195_CSEIT18.118}, pages = {33 -- 38}, abstract = {The paper at hand describes how a regional university of applied sciences tried to internationalize its learning and teaching environment. It describes the challenges encountered, the managerial approach taken, illustrates the implemented initiatives, and how effective they turned out. The results might be relevant to faculty staff in managerial positions at regional universities all over the world that face the challenge to internationalize their teaching and learning environment for the benefit of their domestic students.}, subject = {Internationalisierung}, language = {en} }