@inproceedings{HauserGrabingerMottoketal., author = {Hauser, Florian and Grabinger, Lisa and Mottok, J{\"u}rgen and Jahn, Sabrina and Nadimpalli, Vamsi Krishna}, title = {The Expert's View: Eye Movement Modeling Examples in Software Engineering Education}, series = {Proceedings of the 5th European Conference on Software Engineering Education, Seeon/Germany, June 19 - 21, 2023}, booktitle = {Proceedings of the 5th European Conference on Software Engineering Education, Seeon/Germany, June 19 - 21, 2023}, publisher = {ACM}, isbn = {978-1-4503-9956-2}, doi = {10.1145/3593663.3593683}, pages = {148 -- 152}, abstract = {This study investigates the impact of eye movement modeling examples in Software Engineering education. Software Engineering is a highly visual domain. The daily tasks of a software engineer (e.g., formulating requirements, creating UML diagrams, or conducting a code review) require in many cases the use of certain visual strategies. Although these strategies can be found for experts, it has been observed in different eye tracking studies that students have difficulties in learning and applying them. To familiarize students with these visual strategies and to provide them with a better understanding for the cognitive processes involved, a total of seven eye movement modeling examples was created. The seven eye movement modeling examples cover relevant parts of an introductory Software Engineering lecture; they are focused on typical situations in which visual strategies are applied. The results of a questionnaire-based evaluation shows that students consider the eye movement modeling examples as useful, feel supported in their learning process, and would like to see more use of them in the Software Engineering lecture. Furthermore, the students suggested that eye movement modeling examples should also be used in other lectures.}, language = {en} } @article{SchaefferHerrmannSchratzenstalleretal., author = {Schaeffer, Leon and Herrmann, David and Schratzenstaller, Thomas and Dendorfer, Sebastian and B{\"o}hm, Valter}, title = {Preliminary theoretical considerations on the stiffness characteristics of a tensegrity joint for the use in dynamic orthoses}, series = {Journal of Medical Robotics Research}, journal = {Journal of Medical Robotics Research}, publisher = {World Scientific}, doi = {10.1142/S2424905X23400081}, abstract = {Early motion therapy plays an important role for effective long-term healing of joint injuries. In many cases, conventional dynamic orthoses fail to address the intricate movement possibilities of the underlying joints, limited by their simplistic joint representations, often represented by revolute joints, enabling rotations by only one axis. In this paper, a two-dimensional compliant tensegrity joint for use in biomedical applications is investigated. It consists of two compressed members and five compliant tensioned members. Relative movement possibilities are realized by the intrinsic compliance of the structure. In the development of these systems, the first step is the determination of the static stable equilibrium. This analysis is conducted in this paper by considering the potential energy approach or by using the geometric nonlinear finite element method. The mechanical behavior of the structure is assessed with a specific emphasis on its mechanical compliance. The primary objective of this study is the investigation of the influence of structural parameters on the overall stiffness and movability of the structure. The results underscore the significant effect of member parameters on the stiffness and movability of the compliant tensegrity joint, particularly under varying load magnitudes. These findings provide insights for optimizing the joint's performance, contributing to its potential application in advanced orthotic and exoskeleton devices.}, language = {en} } @article{FuhrmannMandlShamoninChamonine, author = {Fuhrmann, Thomas and Mandl, Roland and Shamonin (Chamonine), Mikhail}, title = {Analysis of learning improvement on changing lab course from single experiments to projects}, series = {International Journal of Electrical Engineering Education}, volume = {52}, journal = {International Journal of Electrical Engineering Education}, number = {4}, publisher = {SAGE}, doi = {10.1177/0020720915583863}, pages = {287 -- 297}, abstract = {During recent years, there has been a trend to replace traditional lab courses by project-based learning activities. However, there is currently little scientific evidence for educational improvements through such changes. Some years ago, a lab course on electrical measurements in our bachelor Electrical Engineering and Information Technology was modified from single experiments to projects. This change led to a significant increase in the necessary manpower and lab costs. To justify these higher efforts, it is important to investigate if the learning success increased. We carried out the surveys and collected the statistical data from the students who attended this course. In order to see if the students appreciated this lab course and if there was an objective increase of the students' knowledge, these results were evaluated. Evaluation of the grades in the lecture and lab courses shows that the increase of the students' theoretical and practical knowledge is statistically significant.}, language = {en} } @misc{RueckertRiederRauberetal., author = {R{\"u}ckert, Tobias and Rieder, Maximilian and Rauber, David and Xiao, Michel and Humolli, Eg and Feussner, Hubertus and Wilhelm, Dirk and Palm, Christoph}, title = {Augmenting instrument segmentation in video sequences of minimally invasive surgery by synthetic smoky frames}, series = {International Journal of Computer Assisted Radiology and Surgery}, volume = {18}, journal = {International Journal of Computer Assisted Radiology and Surgery}, number = {Suppl 1}, publisher = {Springer Nature}, doi = {10.1007/s11548-023-02878-2}, pages = {S54 -- S56}, language = {en} } @article{KolevKirchgessnerHoubenetal., author = {Kolev, Kalin and Kirchgeßner, Norbert and Houben, Sebastian and Csisz{\´a}r, Agnes and Rubner, Wolfgang and Palm, Christoph and Eiben, Bj{\"o}rn and Merkel, Rudolf and Cremers, Daniel}, title = {A variational approach to vesicle membrane reconstruction from fluorescence imaging}, series = {Pattern Recognition}, volume = {44}, journal = {Pattern Recognition}, number = {12}, publisher = {Elsevier}, doi = {10.1016/j.patcog.2011.04.019}, pages = {2944 -- 2958}, abstract = {Biological applications like vesicle membrane analysis involve the precise segmentation of 3D structures in noisy volumetric data, obtained by techniques like magnetic resonance imaging (MRI) or laser scanning microscopy (LSM). Dealing with such data is a challenging task and requires robust and accurate segmentation methods. In this article, we propose a novel energy model for 3D segmentation fusing various cues like regional intensity subdivision, edge alignment and orientation information. The uniqueness of the approach consists in the definition of a new anisotropic regularizer, which accounts for the unbalanced slicing of the measured volume data, and the generalization of an efficient numerical scheme for solving the arising minimization problem, based on linearization and fixed-point iteration. We show how the proposed energy model can be optimized globally by making use of recent continuous convex relaxation techniques. The accuracy and robustness of the presented approach are demonstrated by evaluating it on multiple real data sets and comparing it to alternative segmentation methods based on level sets. Although the proposed model is designed with focus on the particular application at hand, it is general enough to be applied to a variety of different segmentation tasks.}, subject = {Dreidimensionale Bildverarbeitung}, language = {en} } @inproceedings{SeebauerJahnMottok, author = {Seebauer, Stefan and Jahn, Sabrina and Mottok, J{\"u}rgen}, title = {Learning from Escape Rooms? A Study Design Concept Measuring the Effect of a Cryptography Educational Escape Room}, series = {2020 IEEE Global Engineering Education Conference (EDUCON): 27-30 April 2020, Porto, Portugal}, booktitle = {2020 IEEE Global Engineering Education Conference (EDUCON): 27-30 April 2020, Porto, Portugal}, doi = {10.1109/EDUCON45650.2020.9125333}, pages = {1684 -- 1685}, abstract = {Experts predict that more IT-Security specialists will be needed in the coming years, but in current higher education in engineering disciplines, this topic is hardly addressed. Newer learning methods such as game-based learning (GBL) are enjoying an increasing popularity as their improvement in the education of subject specific topics can be proven by a variety of studies. We chose Educational Escape Rooms (EduER) as a GBL-tool to impart IT-Security in higher education of engineers. In our Escape Room (ER), the students try to solve puzzles and riddles with learned knowledge on the emphasis of cryptography. This paper first deals with a brief introduction to GBL and EduERs, followed by the design of our ER concept, containing different tasks with focus on the topic of cryptography. The tasks cover different cryptographic methods and hash algorithms, e.g. AES, RSA, SHA3. Afterwards the experimental study is presented. The study of the EduER was carried out with students from the bachelor's program in Electrical Engineering and Information Technology at the OTH Regensburg. The participants were divided into three groups of 5 to 8 persons each. They received a briefing with important information, followed by the ER execution, a debriefing afterwards and an exam-like evaluation sheet to test their learned knowledge. Finally, first basic results are presented.}, language = {en} } @inproceedings{KloppGoldVeerkampAbkeetal., author = {Klopp, Marco and Gold-Veerkamp, Carolin and Abke, J{\"o}rg and Borgeest, Kai and Reuter, Rebecca and Jahn, Sabrina and Mottok, J{\"u}rgen and Sedelmaier, Yvonne and Lehmann, Alexander and Landes, Dieter}, title = {Totally Different and yet so Alike: Three Concepts to Use Scrum in Higher Education}, series = {Proceedings of the 4th European Conference on Software Engineering Education (ECSEE '20): June 2020, Seeon/Bavaria, Germany}, booktitle = {Proceedings of the 4th European Conference on Software Engineering Education (ECSEE '20): June 2020, Seeon/Bavaria, Germany}, doi = {10.1145/3396802.3396817}, pages = {12 -- 21}, abstract = {Software process models are important in software projects in order to give the work of a project guidelines or a framework. However, teaching process models in higher education seems to be quite challenging. This has to do with the fact that undergraduates have no experience with projects in which process models are used. The theoretical mediation of process models is initially on a very abstract level. For this reason, we chose to combine two didactic approaches, namely problem-based learning and project work. Various traditional plan-driven process models have been expanded in courses in Software Engineering with agile process models. The Scrum Framework is the focus of consideration of this paper. Three Universities of Applied Sciences which cooperate in the EVELIN project focused on Scrum as a process model and integrated it into their teaching. Since the respective concepts of implementation differ, they should be presented and compared in this article to presents some practice approaches. The goal of this presentation of is a uniform evaluation in order to obtain insights from different perspectives. This comparison can draw conclusions for possible necessary improvements of the respective concepts.}, language = {en} } @inproceedings{HauserReuterGruberetal., author = {Hauser, Florian and Reuter, Rebecca and Gruber, Hans and Mottok, J{\"u}rgen}, title = {Research competence: Modification of a questionnaire to measure research competence at universities of applied sciences}, series = {IEEE Global Engineering Education Conference (EDUCON), 17-20 April 2018, Santa Cruz de Tenerife, Spain}, booktitle = {IEEE Global Engineering Education Conference (EDUCON), 17-20 April 2018, Santa Cruz de Tenerife, Spain}, doi = {10.1109/EDUCON.2018.8363216}, pages = {109 -- 117}, abstract = {This paper deals with the validation and modification of the German questionnaire "F-Komp". In its original version, it was intended to measure university students' research competences. In the beginning of this study, there were only a few tools available which were reliable. For the purposes of this study, they were not suitable. At the same time, there was no validated version of the F-Komp available, which made the whole validation process for further usage necessary. This questionnaire is based on a structure, which consist of different skills and knowledge and is focused on measuring research competence in general. The validation and modification of the F-Komp is therefore the aim of our contribution as well as a revised version of the questionnaire. We proceeded an explorative factor and a reliability analysis to do a general evaluation of the tool. Some modifications were done in the questionnaire to make it more suitable to the requirements of technical oriented universities of applied sciences [5]. Our revised version is slightly longer and contains several items to gather data about the participants demographics. The modified questionnaire is based on a more appropriate factor structure. This structure is more practically oriented and pays attention to ethical issues. In future cases, this questionnaire will be used in research oriented courses to measure students' progress in acquiring the knowledge and methods which are necessary to perform as a scientist in different research areas.}, language = {en} } @article{StelzerKrenkel, author = {Stelzer, Vera and Krenkel, Lars}, title = {2D numerical investigations derived from a 3D dragonfly wing captured with a high-resolution micro-CT}, series = {Technology and health care : official journal of the European Society for Engineering and Medicine}, volume = {30}, journal = {Technology and health care : official journal of the European Society for Engineering and Medicine}, number = {1}, publisher = {IOS Press}, doi = {10.3233/THC-219010}, pages = {283 -- 289}, abstract = {BACKGROUND: Due to their corrugated profile, dragonfly wings have special aerodynamic characteristics during flying and gliding. OBJECTIVE: The aim of this study was to create a realistic 3D model of a dragonfly wing captured with a high-resolution micro-CT. To represent geometry changes in span and chord length and their aerodynamic effects, numerical investigations are carried out at different wing positions. METHODS: The forewing of a Camacinia gigantea was captured using a micro-CT. After the wing was adapted an error-free 3D model resulted. The wing was cut every 5 mm and 2D numerical analyses were conducted in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, USA). RESULTS: The highest lift coefficient, as well as the highest lift-to-drag ratio, resulted at 0 mm and an angle of attack (AOA) of 5∘. At AOAs of 10∘ or 15∘, the flow around the wing stalled and a K{\´a}rm{\´a}n vortex street behind the wing becomes CONCLUSIONS: The velocity is higher on the upper side of the wing compared to the lower side. The pressure acts vice versa. Due to the recirculation zones that are formed in valleys of the corrugation pattern the wing resembles the form of an airfoil.}, language = {en} } @article{SchecklmannSchmausserKlingeretal., author = {Schecklmann, Martin and Schmausser, Maximilian and Klinger, Felix and Kreuzer, Peter M. and Krenkel, Lars and Langguth, Berthold}, title = {Resting motor threshold and magnetic field output of the figure-of-8 and the double-cone coil}, series = {scientific reports}, volume = {10}, journal = {scientific reports}, number = {1}, publisher = {Nature}, doi = {10.1038/s41598-020-58034-2}, abstract = {The use of the double-cone (DC) coil in transcranial magnetic stimulation (TMS) is promoted with the notion that the DC coil enables stimulation of deeper brain areas in contrast to conventional figure-of-8 (Fo8) coils. However, systematic comparisons of these two coil types with respect to the spatial distribution of the magnetic field output and also to the induced activity in superficial and deeper brain areas are limited. Resting motor thresholds of the left and right first dorsal interosseous (FDI) and tibialis anterior (TA) were determined with the DC and the Fo8 coil in 17 healthy subjects. Coils were orientated over the corresponding motor area in an angle of 45 degrees for the hand area with the handle pointing in posterior direction and in medio-lateral direction for the leg area. Physical measurements were done with an automatic gantry table using a Gaussmeter. Resting motor threshold was higher for the leg area in contrast to the hand area and for the Fo8 in contrast to the DC coil. Muscle by coil interaction was also significant providing higher differences between leg and hand area for the Fo8 (about 27\%) in contrast to the DC coil (about 15\%). Magnetic field strength was higher for the DC coil in contrast to the Fo8 coil. The DC coil produces a higher magnetic field with higher depth of penetration than the figure of eight coil.}, language = {en} } @article{Scherzinger, author = {Scherzinger, Stefanie}, title = {Build your own SQL-on-Hadoop Query Engine A Report on a Term Project in a Master-level Database Course}, series = {ACM SIGMOD Record}, volume = {48}, journal = {ACM SIGMOD Record}, number = {2}, publisher = {ACM}, doi = {10.1145/3377330.3377336}, pages = {33 -- 38}, abstract = {This is a report on a course taught at OTH Regensburg in the summer term of 2018. The students in this course built their own SQL-on-Hadoop engine as a term project in just 8 weeks. miniHive is written in Python and compiles SQL queries into MapReduce workflows. These are then executed on Hadoop. miniHive performs generic query optimizations (selection and projection pushdown, or cost-based join reordering), as well as MapReduce-specific optimizations. The course was taught in English, using a flipped classroom model. The course material was mainly compiled from third-party teaching videos. This report describes the course setup, the miniHive milestones, and gives a short review of the most successful student projects.}, language = {en} } @inproceedings{FrikelGoeppelHaltmeier, author = {Frikel, J{\"u}rgen and G{\"o}ppel, Simon and Haltmeier, Markus}, title = {Combining Reconstruction and Edge Detection in Computed Tomography}, series = {Bildverarbeitung f{\"u}r die Medizin 2021 : Proceedings, German Workshop on Medical Image Computing: Regensburg, March 7-9, 2021}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2021 : Proceedings, German Workshop on Medical Image Computing: Regensburg, March 7-9, 2021}, editor = {Palm, Christoph}, publisher = {Springer Vieweg}, address = {Wiesbaden, Germany}, isbn = {978-3-658-33197-9}, doi = {10.1007/978-3-658-33198-6_37}, pages = {153 -- 157}, abstract = {We present two methods that combine image reconstruction and edge detection in computed tomography (CT) scans. Our first method is as an extension of the prominent filtered backprojection algorithm. In our second method we employ l1-regularization for stable calculation of the gradient. As opposed to the first method, we show that this approach is able to compensate for undersampled CT data.}, language = {en} } @inproceedings{JahnWeissAkcakocaetal., author = {Jahn, Sabrina and Weiss, Nils and Akcakoca, Ugur and Mottok, J{\"u}rgen}, title = {Under The Hood - A Concept for Virtualized Automotive Security Education}, series = {EDULEARN21: Proceedings}, booktitle = {EDULEARN21: Proceedings}, editor = {G{\´o}mez Chova, L. and L{\´o}pez Mart{\´i}nez, A. and Candel Torres, I.}, isbn = {978-84-09-31267-2}, issn = {2340-1117}, doi = {10.21125/edulearn.2021.1231}, pages = {6109 -- 6118}, abstract = {In recent years, our society faced a massive interconnection of computer-based everyday objects, which opens these items for cyber-attacks. Dependent on the physical capabilities, successful attacks can vary from data exposure or a loss of functionality to a threat to life and limb. Connected- and autonomous vehicles are extremely safety-critical systems with a huge damage potential. This global trend, together with existing and upcoming regulations (ISO 270xx, ISO 21434, UNECE WP.29, UNECE R155), and the lack of qualified professionals create a tension field for the entire automotive industry. Hence, new education concepts for engineers of safety-critical and connected systems are necessary to secure our daily and future systems against cyber-attacks and raise awareness and knowledge of the topic of IT-Security. Existing automotive security education systems have one common problem: All systems are hardware-based and therefore have very steep learning curves for beginners. Hardware-based systems, in general, are expensive in their initial costs, require regular maintenance, and add diverse operational difficulties independent of the aspired education goal. Additionally, the global pandemic increased the necessity of virtual education concepts for security training in cyber-physical systems. Therefore, we present a novel concept for the education of cyber-security professionals for automotive systems based on discovery and problem-based learning in a virtual learning environment (VLE). Our concept contains individual exercises focusing on the topics of vulnerabilities and attacks in automotive networks and systems. Each exercise relates those topics to the corresponding security goals and countermeasures for mitigation. The learners work collaboratively in a self-contained manner within the VLE to acquire the necessary information to answer questions or find a solution to the given problem. To consider the heterogeneous background (e.g. knowledge, experience, preconceptions) of the learners, the topics can be presented in different difficulties, enabling an adaptable learning environment and different learning trajectories within the exercises. The concept is based on a VLE, consisting of automotive networks and components, which simulate the behavior of a vehicle. This environment provides a hands-on, "real-life" scenario, which allows discovery and problem-based learning in a realistic, but cheap and scalable education environment. Furthermore, virtualization removes common difficulties, always present in training on real hardware. This aims to decrease complexity, prevent learning obstacles related to hardware handling, and enables a location-independent learning environment. The target group of our education concept is Bachelor and Master students of computer science, engineering (e.g. electrical engineering, mechatronics), or similar studies, and (experienced) engineers from the industry. In summary, our publication contains two contributions. We present an adaptable virtual learning environment for automotive security education, combined with an educational concept based on discovery and problem-based learning techniques. The goals of our concept are the education of cyber-security professionals for safety-critical, connected automotive systems and the support of life-long learning reaching from academic education to training in the industry.}, language = {en} } @article{Kiesl, author = {Kiesl, Hans}, title = {Indirect Sampling: A Review of Theory and Recent Applications}, series = {AStA Wirtschafts- und Sozialstatistisches Archiv}, volume = {10}, journal = {AStA Wirtschafts- und Sozialstatistisches Archiv}, number = {4}, publisher = {Springer}, doi = {10.1007/s11943-016-0183-3}, pages = {289 -- 303}, abstract = {Survey practitioners regularly face the task to draw a sample from a (sub-) population for which no sampling frame exists. Indirect sampling might be a way out in such situations, given that connections exist between the target population and another population for which probability sampling is feasible. While the theory of indirect sampling originated in the context of household panel studies, a wider area of applications emerged during the last decade. We first give a short review of the theory of indirect sampling, show that estimators from indirect samples might have smaller variance than the corresponding direct estimators (contrary to some claims in the literature), summarize recent applications and discuss some issues that are relevant for applying indirect sampling in practice. We also present some theory for unbiased estimation after an additional subsampling stage that was necessary for sampling kindergarten children in the German National Educational Panel Study (NEPS).}, language = {en} } @article{JosephSchummRummeletal., author = {Joseph, Saskia and Schumm, Michael and Rummel, Otmar and Soska, Alexander and Renschke, Michael and Mottok, J{\"u}rgen and Niemetz, Michael and Schroll-Decker, Irmgard}, title = {Teaching finite state machines with case method and role play}, series = {2014 IEEE Global Engineering Education Conference (EDUCON 2014) : Istanbul, Turkey, 3 - 5 April 2014}, journal = {2014 IEEE Global Engineering Education Conference (EDUCON 2014) : Istanbul, Turkey, 3 - 5 April 2014}, publisher = {IEEE}, doi = {10.1109/EduCon.2013.6530275}, pages = {1302 -- 1305}, abstract = {The professional requirements in Software Engineering have become highly volatile due to the complexities of project development and rapid and innovative changes occurring in the field. Therefore, the development of inter-personal and social competences has gained central importance in the training of software developers. This paper will present a concept allowing to acquire competences by using Case Method and Role Play as instruments in several lectures of Software Engineering. By approaching the issue of competence acquisition on a technical as well as on an educational and social level, life-long learning is facilitated and supported.}, language = {en} } @article{BirkenmaierDorniaLehleetal., author = {Birkenmaier, Clemens and Dornia, Christian and Lehle, Karla and M{\"u}ller, Thomas and Gruber, Michael Andreas and Philipp, Alois and Krenkel, Lars}, title = {Analysis of Thrombotic Deposits in Extracorporeal Membrane Oxygenators by High-resolution Microcomputed Tomography: A Feasibility Study}, series = {ASAIO Journal / American Society for Artificial Internal Organs}, volume = {66}, journal = {ASAIO Journal / American Society for Artificial Internal Organs}, number = {8}, publisher = {Lippincott Williams \& Wilkins}, issn = {1538-943X}, doi = {10.1097/MAT.0000000000001089}, pages = {922 -- 928}, abstract = {Coagulative disorders, especially clotting during extracorporeal membrane oxygenation, are frequent complications. Direct visualization and analysis of deposits in membrane oxygenators using computed tomography (CT) may provide an insight into the underlying mechanisms causing thrombotic events. However, the already established multidetector CT1 (MDCT) method shows major limitations. Here, we demonstrate the feasibility of applying industrial micro-CT (μCT) to circumvent these restrictions. Three clinically used membrane oxygenators were investigated applying both MDCT and μCT. The scans were analyzed in terms of clot volume and local clot distribution. As validation, the clot volume was also determined from the fluid volume, which could be filled into the respective used oxygenator compared to a new device. In addition, cross-sectional CT images were compared with crosscut oxygenators. Based on the μCT findings, a morphological measure (sphericity) for assessing clot structures in membrane oxygenators is introduced. Furthermore, by comparing MDCT and μCT results, an augmentation of the MDCT method is proposed, which allows for improved clot volume determination in a clinical setting.}, language = {en} } @inproceedings{StelzerTauwaldVielsmeieretal., author = {Stelzer, Vera and Tauwald, Sandra Melina and Vielsmeier, Veronika and Cieplik, Fabian and Kandulski, Arne and Schneider-Brachert, Wulf and W{\"u}nsch, Olaf and R{\"u}tten, Markus and Krenkel, Lars}, title = {Generation and Distribution of Surgical Smoke During High Frequency Electrocauterization}, series = {New Results in Numerical and Experimental Fluid Mechanics XIV. STAB/DGLR Symposium 2022}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics XIV. STAB/DGLR Symposium 2022}, editor = {Dillman, Andreas and Heller, Gerd and Kraemer, Ewald and Wagner, Claus and Weiss, Julien}, publisher = {Springer Nature Switzerland AG}, address = {Cham, Switzerland}, isbn = {978-3-031-40481-8}, doi = {10.1007/978-3-031-40482-5_53}, pages = {559 -- 568}, abstract = {Surgical Smoke is generated during the cauterization of tissue with high-frequency (HF) devices and consists of 95\% water vapor and 5\% cellular debris. When the coagulation tweezers, which are supplied with HF voltage by the HF device, touch tissue, the electric circuit is closed, and smoke is generated by the heat. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during coagulation of tissue. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. With higher power of the HF device, the particles generated are larger in size and the total number of particles generated is also higher. Adding artificial saliva to the tissue shows even higher particle counts. The study by laser light sheet also confirms this. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms considering the risk arising from surgical smoke. Furthermore, the experiments will provide the database for further numerical investigations.}, language = {en} } @article{SuezerogluMelchiorsGassmannPalmie, author = {S{\"u}zeroglu-Melchiors, Sevim and Gassmann, Oliver and Palmi{\´e}, Maximilian}, title = {Friend or foe? The effects of patent attorney use on filing strategy vis-a-vis the effects of firm experience}, series = {Management Decision}, volume = {55}, journal = {Management Decision}, number = {6}, publisher = {Emerald}, issn = {0025-1747}, doi = {10.1108/MD-01-2016-0047}, pages = {1122 -- 1142}, abstract = {PurposeIn the intellectual property (IP) and management literature, the question of how external patent attorneys impact patent filings has been understudied. The purpose of this paper is to advance this area of research by examining how the use of external patent attorneys influences the patent filing strategies of firms and what impact firms? level of experience with the exclusive use of in-house resources has on filing strategies. This study, thus, provides insights into the strategic dimension behind patent filing, a process which is affected by patent attorneys? work and decision-making processes.Design/methodology/approachThe econometric analysis is based on a patent database of 922,553 patents which is combined with an EPO patent database covering applications from 1990 to 2010. The authors test the hypotheses for this study using patent indicators addressing the impact of in-house firm experience vs the use of external patent attorneys on firm?s filing strategy.FindingsThis research finds empirical evidence that external patent attorneys? work has an effect on patent scope, international scope, and patenting speed. Moreover, it can be shown that external patent attorneys have a positive impact on most filing dimensions, such as patent scope, international scope and the Patent Cooperation Treaty option, whereas the level of in-house firm experience has a negative impact on most filing dimensions. This implies that external patent attorneys seem to pursue a ?maximization approach? while experienced firms seem to pursue a more differentiated approach to filing patents, for instance, drafting narrower and more focused patents.Practical implicationsThe study suggests that effective filing strategies require an integrated approach between diverse IP stakeholders. More particularly, filing strategies should be communicated and aligned between all actors, including external patent attorneys in order to achieve the targeted patenting output.Originality/valueThe current study develops a patent filing typology, which accounts for patent attorneys? decision options. In providing insights into patent attorneys? work and their impacts on intellectual property rights management, the study is a useful complement to prior research, which has predominantly focused on applicants or examiners.}, language = {en} } @article{RoeslSeitz, author = {R{\"o}sl, Gerhard and Seitz, Franz}, title = {Central Bank Digital Currency and Cash in the Euro Area: Current Developments and one Specific Proposal}, series = {Credit and Capital Markets - Kredit und Kapital}, volume = {55}, journal = {Credit and Capital Markets - Kredit und Kapital}, number = {4}, publisher = {Duncker \& Humblot}, address = {Berlin}, doi = {10.3790/ccm.55.4.523}, pages = {523 -- 551}, abstract = {The present paper provides an overview on current developments of cash usage and issue of central bank digital currency (CBDC) in the euro area and proposes a possible design of a digital euro that allows for instant offline payments. Cash usage at the point-of-sale decreased perceptibly in the past years mainly due to the ongoing trend towards digitalization. However, we show that there are also indications that consumers were somewhat pushed into cashless payments by government regulations and supply-side restrictions by commercial banks. Nonetheless, overall demand for euro cash remained strong and even increased relative to GDP since the financial crisis in 2008. In this process, however, we observe a supply-driven shift towards lower banknote denominations. Central banks all over the world are intensively thinking about the potential issue of ­CBDC as a substitute or complement to cash. Based on some of its preferred characteristics, we propose a double pre-paid scheme combining central elements of TARGET Instant Payment Settlement and electronic money features enabling offline and online instant payments. Since anonymity is categorically discarded by the ECB and as cash has some special advantages from a consumer perspective, the digital euro will rather co-circulate with cash than replace it in transactions.}, language = {en} } @article{SuezeroğluMelchiors, author = {S{\"u}zeroğlu-Melchiors, Sevim}, title = {The supply side of IP management: Understanding firms' choices regarding IP intermediaries}, series = {World Patent Information}, volume = {50}, journal = {World Patent Information}, publisher = {Elsevier}, issn = {0172-2190}, doi = {10.1016/j.wpi.2017.08.002}, pages = {55 -- 63}, abstract = {Studies focusing on the supply side of IP management, particularly on the outsourcing of patent related work, are relatively rare. This paper aims to contribute to the IP literature in two ways. First, a definition of the IP service provider is proposed. Second, I consider three main hypotheses that determine a firm's preference for outsourced IP work. Using data on the outsourcing of patent renewal payments, I found evidence that the choice of IP supplier is affected by: (1) the firm's own IP maintenance capabilities, (2) the firm's IP knowledge utilization, and (3) the IP complexity.}, language = {en} } @article{LingelHausPaschkeetal., author = {Lingel, Maximilian P. and Haus, Moritz and Paschke, Lukas and Foltan, Maik and Lubnow, Matthias and Gruber, Michael and Krenkel, Lars and Lehle, Karla}, title = {Clinical relevance of cell-free DNA during venovenous extracorporeal membrane oxygenation}, series = {Artificial organs}, volume = {47}, journal = {Artificial organs}, number = {11}, publisher = {Wiley}, issn = {1525-1594}, doi = {10.1111/aor.14616}, pages = {1720 -- 1731}, abstract = {BACKGROUND: Thrombosis remains a critical complication during venovenous extracorporeal membrane oxygenation (VV ECMO). The involvement of neutrophil extracellular traps (NETs) in thrombogenesis has to be discussed. The aim was to verify NETs in the form of cell-free DNA (cfDNA) in the plasma of patients during ECMO. METHODS: A fluorescent DNA-binding dye (QuantifFluor®, Promega) was used to detect cell-free DNA in plasma samples. cfDNA concentrations from volunteers (n = 21) and patients (n = 9) were compared and correlated with clinical/technical data before/during support, ECMO end and time of a system exchange. RESULTS: Before ECMO, patients with a median (IQR) age of 59 (51/63) years, SOFA score of 11 (10/15), and ECMO run time of 9.0 (7.0/19.5) days presented significantly higher levels of cfDNA compared to volunteers (6.4 (5.8/7.9) ng/μL vs. 5.9 (5.4/6.3) ng/μL; p = 0.044). Within 2 days after ECMO start, cfDNA, inflammatory, and hemolysis parameters remained unchanged, while platelets decreased (p = 0.005). After ECMO removal at the end of therapy, cfDNA, inflammation, and coagulation data (except antithrombin III) remained unchanged. The renewal of a system resulted in known alterations in fibrinogen, d-dimers, and platelets, while cfDNA remained unchanged. CONCLUSION: Detection of cfDNA in plasma of ECMO patients was not an indicator of acute and circuit-induced thrombogenesis.}, language = {en} } @article{RueckertRueckertPalm, author = {R{\"u}ckert, Tobias and R{\"u}ckert, Daniel and Palm, Christoph}, title = {Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art}, series = {Computers in Biology and Medicine}, volume = {169}, journal = {Computers in Biology and Medicine}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.compbiomed.2024.107929}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-69830}, pages = {24}, abstract = {In the field of computer- and robot-assisted minimally invasive surgery, enormous progress has been made in recent years based on the recognition of surgical instruments in endoscopic images and videos. In particular, the determination of the position and type of instruments is of great interest. Current work involves both spatial and temporal information, with the idea that predicting the movement of surgical tools over time may improve the quality of the final segmentations. The provision of publicly available datasets has recently encouraged the development of new methods, mainly based on deep learning. In this review, we identify and characterize datasets used for method development and evaluation and quantify their frequency of use in the literature. We further present an overview of the current state of research regarding the segmentation and tracking of minimally invasive surgical instruments in endoscopic images and videos. The paper focuses on methods that work purely visually, without markers of any kind attached to the instruments, considering both single-frame semantic and instance segmentation approaches, as well as those that incorporate temporal information. The publications analyzed were identified through the platforms Google Scholar, Web of Science, and PubMed. The search terms used were "instrument segmentation", "instrument tracking", "surgical tool segmentation", and "surgical tool tracking", resulting in a total of 741 articles published between 01/2015 and 07/2023, of which 123 were included using systematic selection criteria. A discussion of the reviewed literature is provided, highlighting existing shortcomings and emphasizing the available potential for future developments.}, subject = {Deep Learning}, language = {en} } @article{RueweEigenbergerKleinetal., author = {Ruewe, Marc and Eigenberger, Andreas and Klein, Silvan and von Riedheim, Antonia and Gugg, Christine and Prantl, Lukas and Palm, Christoph and Weiherer, Maximilian and Zeman, Florian and Anker, Alexandra}, title = {Precise Monitoring of Returning Sensation in Digital Nerve Lesions by 3-D Imaging: A Proof-of-Concept Study}, series = {Plastic and Reconstructive Surgery}, volume = {152}, journal = {Plastic and Reconstructive Surgery}, number = {4}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia, Pa.}, organization = {American Society of Plastic Surgeons}, issn = {1529-4242}, doi = {10.1097/PRS.0000000000010456}, pages = {670e -- 674e}, abstract = {Digital nerve lesions result in a loss of tactile sensation reflected by an anesthetic area (AA) at the radial or ulnar aspect of the respective digit. Yet, available tools to monitor the recovery of tactile sense have been criticized for their lack of validity. However, the precise quantification of AA dynamics by three-dimensional (3-D) imaging could serve as an accurate surrogate to monitor recovery following digital nerve repair. For validation, AAs were marked on digits of healthy volunteers to simulate the AA of an impaired cutaneous innervation. Three dimensional models were composed from raw images that had been acquired with a 3-D camera (Vectra H2) to precisely quantify relative AA for each digit (3-D models, n= 80). Operator properties varied regarding individual experience in 3-D imaging and image processing. Additionally, the concept was applied in a clinical case study. Images taken by experienced photographers were rated better quality (p< 0.001) and needed less processing time (p= 0.020). Quantification of the relative AA was neither altered significantly by experience levels of the photographer (p= 0.425) nor the image assembler (p= 0.749). The proposed concept allows precise and reliable surface quantification of digits and can be performed consistently without relevant distortion by lack of examiner experience. Routine 3-D imaging of the AA has the great potential to provide visual evidence of various returning states of sensation and to convert sensory nerve recovery into a metric variable with high responsiveness to temporal progress.}, language = {en} } @misc{MarkovGlazerSchliermann, author = {Markov-Glazer, Alon and Schliermann, Rainer}, title = {Sport psychological Skills Training (PST) in Elite Deaf Sport}, series = {The 23rd International Symposium of Adapted Physical Activity (Online ISAPA 2021) and the Nordic Congress of Adapted Physical Activity: 15th-18th June 2021, Jyv{\"a}skyl{\"a}, Finland}, journal = {The 23rd International Symposium of Adapted Physical Activity (Online ISAPA 2021) and the Nordic Congress of Adapted Physical Activity: 15th-18th June 2021, Jyv{\"a}skyl{\"a}, Finland}, editor = {Ng, K. and Rintala, P. and Kandzia, A. and Lindeman, A.}, publisher = {University of Jyv{\"a}skyl{\"a}}, address = {Jyv{\"a}skyl{\"a}}, pages = {57}, language = {en} } @inproceedings{MarkovGlazerSchliermann, author = {Markov-Glazer, Alon and Schliermann, Rainer}, title = {Psychological skills and techniques utility patterns in elite deaf sport}, series = {International Society of Sport Psychology (ISSP), 15th World Congress, Proceedings, 30th September - 4th October 2021, Taipeh, China}, booktitle = {International Society of Sport Psychology (ISSP), 15th World Congress, Proceedings, 30th September - 4th October 2021, Taipeh, China}, editor = {Schinke, Robert and Chang, Yu-Kai}, publisher = {Routledge}, pages = {236 -- 237}, language = {en} } @article{TauwaldErzingerQuadrioetal., author = {Tauwald, Sandra Melina and Erzinger, Florian and Quadrio, Maurizio and R{\"u}tten, Markus and Stemmer, Christian and Krenkel, Lars}, title = {Tomo-PIV in a patient-specific model of human nasal cavities: a methodological approach}, series = {Measurement Science and Technology}, volume = {35}, journal = {Measurement Science and Technology}, number = {5}, publisher = {IOP Publishing}, doi = {10.1088/1361-6501/ad282c}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-70393}, abstract = {The human nose serves as the primary gateway for air entering the respiratory system and plays a vital role in breathing. Nasal breathing difficulties are a significant health concern, leading to substantial healthcare costs for patients. Understanding nasal airflow dynamics is crucial for comprehending respiratory mechanisms. This article presents a detailed study using tomo-Particle Image Velocimetry (PIV) to investigate nasal airflow dynamics while addressing its accuracy. Embedded in the OpenNose project, the work described aims to provide a validation basis for different numerical approaches to upper airway flow. The study includes the manufacturing of a transparent silicone model based on a clinical CT scan, refractive index matching to minimize optical distortions, and precise flow rate adjustments based on physiological breathing cycles. This method allows for spatial high-resolution investigations in different regions of interest within the nasopharynx during various phases of the breathing cycle. The results demonstrate the accuracy of the investigations, enabling detailed analysis of flow structures and gradients. This spatial high-resolution tomo-PIV approach provides valuable insights into the complex flow phenomena occurring during the physiological breathing cycle in the nasopharynx. The study's findings contribute to advancements in non-free-of-sight experimental flow investigation of complex cavities under nearly realistic conditions. Furthermore, reliable and accurate experimental data is crucial for properly validating numerical approaches that compute this patient-specific flow for clinical purposes.}, language = {en} } @article{TauwaldMichelBrandtetal., author = {Tauwald, Sandra Melina and Michel, Johanna and Brandt, Marie and Vielsmeier, Veronika and Stemmer, Christian and Krenkel, Lars}, title = {Experimental studies and mathematical modeling of the viscoelastic rheology of tracheobronchial mucus from respiratory healthy patients}, series = {Multidisciplinary Respiratory Medicine}, volume = {18}, journal = {Multidisciplinary Respiratory Medicine}, number = {1}, publisher = {PAGEPress}, address = {Pavia, Italy}, issn = {2049-6958}, doi = {10.4081/mrm.2023.923}, pages = {12}, abstract = {BACKGROUND: Tracheobronchial mucus plays a crucial role in pulmonary function by providing protection against inhaled pathogens. Due to its composition of water, mucins, and other biomolecules, it has a complex viscoelastic rheological behavior. This interplay of both viscous and elastic properties has not been fully described yet. In this study, we characterize the rheology of human mucus using oscillatory and transient tests. Based on the transient tests, we describe the material behavior of mucus under stress and strain loading by mathematical models. METHODS: Mucus samples were collected from clinically used endotracheal tubes. For rheological characterization, oscillatory amplitude-sweep and frequency-sweep tests, and transient creep-recovery and stress-relaxation tests were performed. The results of the transient test were approximated using the Burgers model, the Weibull distribution, and the six-element Maxwell model. The three-dimensional microstructure of the tracheobronchial mucus was visualized using scanning electron microscope imaging. RESULTS: Amplitude-sweep tests showed storage moduli ranging from 0.1 Pa to 10000 Pa and a median critical strain of 4 \%. In frequency-sweep tests, storage and loss moduli increased with frequency, with the median of the storage modulus ranging from 10 Pa to 30 Pa, and the median of the loss modulus from 5 Pa to 14 Pa. The Burgers model approximates the viscoelastic behavior of tracheobronchial mucus during a constant load of stress appropriately (R2 of 0.99), and the Weibull distribution is suitable to predict the recovery of the sample after the removal of this stress (R2 of 0.99). The approximation of the stress-relaxation test data by a six-element Maxwell model shows a larger fit error (R2 of 0.91). CONCLUSIONS: This study provides a detailed description of all process steps of characterizing the rheology of tracheobronchial mucus, including sample collection, microstructure visualization, and rheological investigation. Based on this characterization, we provide mathematical models of the rheological behavior of tracheobronchial mucus. These can now be used to simulate mucus flow in the respiratory system through numerical approaches.}, language = {en} } @inproceedings{TauwaldQuadrioRuettenetal., author = {Tauwald, Sandra Melina and Quadrio, Maurizio and R{\"u}tten, Markus and Stemmer, Christian and Krenkel, Lars}, title = {High Spatial Resolution Tomo-PIV of the Trachea Focussing on the Physiological Breathing Cycle}, series = {New Results in Numerical and Experimental Fluid Mechanics XIV - Contributions to the 23nd STAB/DGLR Symposium}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics XIV - Contributions to the 23nd STAB/DGLR Symposium}, publisher = {Springer}, abstract = {Investigations of complex patient-specific flow in the nasopharynx requires high resolution numerical calculations validated by reliable experiments. When building the validation base and the benchmark of computational fluid dynamics, an experimental setup of the nasal airways was developed. The applied optical measurement technique of tomo-PIV supplies information on the governing flow field in three dimensions. This paper presents tomo-PIV measurements of the highly complex patient-specific geometry of the human trachea. A computertomographic scan of a person's head builds the basis of the experimental silicone model of the nasal airways. An optimised approach for precise refractive index matching avoids optical distortions even in highly complex non-free-of-sight 3D geometries. A linear-motor-driven pump generates breathing scenarios, based on measured breathing cycles. Adjusting of the CCD cameras' double-frame-rate PIV-Δt enables the detailed analysis of flow structures during different cycle phases. Merging regions of interest enables high spatial resolution acquisition of the flow field.}, language = {en} } @inproceedings{Fuhrmann, author = {Fuhrmann, Thomas}, title = {Semi-Structured Lab Projects in Communication Engineering Education}, series = {2023 IEEE Global Engineering Education Conference (EDUCON), 01-04 May 2023, Kuwait}, booktitle = {2023 IEEE Global Engineering Education Conference (EDUCON), 01-04 May 2023, Kuwait}, publisher = {IEEE}, doi = {10.1109/EDUCON54358.2023.10125244}, pages = {1 -- 5}, abstract = {It is generally known that project-based learning is a very important part of engineering education to connect theoretical knowledge with practical work. Students learn to apply their knowledge to real-world challenges as it is the case in their later professional life. If students are not used to project work or the scientific topic is new and relatively complex, they may be overwhelmed. The consequence is that students achieve poor results, are frustrated, and therefore learning success is low. Semi-structured projects are introduced that combine the advantages of structured experiments with projects. The project work is structured into several parts with detailed descriptions of the tasks. In the end, students get similar results to doing a free project, but the success rate is higher due to higher guidance. Therefore, these semi-structured projects are seen to be an appropriate method to guide students to learn how to do project work. The feedback from most students is very positive. Some students with no previous lab experience complained about the project work and wished for more guidance to become familiar with lab work. In sum, the student feedback is encouraging to develop semi-structured projects further.}, language = {en} } @inproceedings{WestnerFuhrmannWaasetal., author = {Westner, Markus and Fuhrmann, Thomas and Waas, Thomas and Skelton, David}, title = {Internationalization of a Computer Science Faculty}, series = {9th Annual International Conference on Computer Science Education: Innovation and Technology (CSEIT 2018), 2018, Singapore}, booktitle = {9th Annual International Conference on Computer Science Education: Innovation and Technology (CSEIT 2018), 2018, Singapore}, doi = {10.5176/2251-2195_CSEIT18.118}, pages = {33 -- 38}, abstract = {The paper at hand describes how a regional university of applied sciences tried to internationalize its learning and teaching environment. It describes the challenges encountered, the managerial approach taken, illustrates the implemented initiatives, and how effective they turned out. The results might be relevant to faculty staff in managerial positions at regional universities all over the world that face the challenge to internationalize their teaching and learning environment for the benefit of their domestic students.}, subject = {Internationalisierung}, language = {en} } @inproceedings{FuhrmannFarmbauerNiemetz, author = {Fuhrmann, Thomas and Farmbauer, Michael and Niemetz, Michael}, title = {Integrating GNU Radio into a Virtual Course about Communication Systems}, series = {44th International Convention on Information, Communication and Electronic Technology (MIPRO): 27.09. - 01.10.2021, Opatija, Croatia}, booktitle = {44th International Convention on Information, Communication and Electronic Technology (MIPRO): 27.09. - 01.10.2021, Opatija, Croatia}, publisher = {IEEE}, isbn = {978-953-233-101-1}, doi = {10.23919/MIPRO52101.2021.9596700}, pages = {1565 -- 1570}, abstract = {Due to the COVID-19 pandemic, the course Communication Systems was transferred from presence to a virtual lecture. No hands-on lab experiments were possible. Therefore, a GNU Radio practical part was integrated into the lecture. A tutorial was written to guide students through the first steps with GNU Radio to decrease initial problems and increase student motivation. Several examples were given regarding digital signal processing, analogue and digital modulation and demodulation. Software Defined Radio receivers were set up in the amateur radio lab of the university and connected to the internet so that students were able to get real radio data to be analyzed and demodulated with their own GNU Radio models. This enables a knowledge transfer from simulated signal processing to the analysis and demodulation of real live signals. Students showed medium to high interest in practical examples during the lectures and tried their own GNU Radio simulations. Overall, the integration of GNU Radio and Software Defined Radio receivers into this virtual lecture gave additional benefits for the students to deal with signal processing and demodulation experiments. It is planned to use GNU Radio in the future for complementary practical examples to the hands-on experiments in the lab.}, language = {en} } @inproceedings{NiemetzFuhrmannFarmbauer, author = {Niemetz, Michael and Fuhrmann, Thomas and Farmbauer, Michael}, title = {Comprehensive Amateur Radio Education including Public Outreach}, series = {IEEE Integrated STEM Education Conference (ISEC), 16-16 March 2019, Princeton, NJ, USA}, booktitle = {IEEE Integrated STEM Education Conference (ISEC), 16-16 March 2019, Princeton, NJ, USA}, publisher = {IEEE}, doi = {10.1109/ISECon.2019.8882078}, pages = {98 -- 103}, abstract = {An amateur radio lecture was developed and is conducted within the general education program of the Ostbayerische Technische Hochschule Regensburg. This course enables the students to participate in a variety of activities within the university. Different learning formats for communication engineering are carried out in combination with an amateur radio station of the university. Additionally, some of the projects serve as anchor points for increased visibility of the university in local society, e.g. by carrying out public events in connection with the local amateur radio community. It is seen that this course together with the amateur radio station have several positive effects for technical education and university visibility.}, language = {en} } @misc{ScheppachRauberStallhoferetal., author = {Scheppach, Markus and Rauber, David and Stallhofer, Johannes and Muzalyova, Anna and Otten, Vera and Manzeneder, Carolin and Schwamberger, Tanja and Wanzl, Julia and Schlottmann, Jakob and Tadic, Vidan and Probst, Andreas and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Fleischmann, Carola and Meinikheim, Michael and Miller, Silvia and M{\"a}rkl, Bruno and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Performance comparison of a deep learning algorithm with endoscopists in the detection of duodenal villous atrophy (VA)}, series = {Endoscopy}, volume = {55}, journal = {Endoscopy}, number = {S02}, publisher = {Thieme}, doi = {10.1055/s-0043-1765421}, pages = {S165}, abstract = {Aims VA is an endoscopic finding of celiac disease (CD), which can easily be missed if pretest probability is low. In this study, we aimed to develop an artificial intelligence (AI) algorithm for the detection of villous atrophy on endoscopic images. Methods 858 images from 182 patients with VA and 846 images from 323 patients with normal duodenal mucosa were used for training and internal validation of an AI algorithm (ResNet18). A separate dataset was used for external validation, as well as determination of detection performance of experts, trainees and trainees with AI support. According to the AI consultation distribution, images were stratified into "easy" and "difficult". Results Internal validation showed 82\%, 85\% and 84\% for sensitivity, specificity and accuracy. External validation showed 90\%, 76\% and 84\%. The algorithm was significantly more sensitive and accurate than trainees, trainees with AI support and experts in endoscopy. AI support in trainees was associated with significantly improved performance. While all endoscopists showed significantly lower detection for "difficult" images, AI performance remained stable. Conclusions The algorithm outperformed trainees and experts in sensitivity and accuracy for VA detection. The significant improvement with AI support suggests a potential clinical benefit. Stable performance of the algorithm in "easy" and "difficult" test images may indicate an advantage in macroscopically challenging cases.}, language = {en} } @article{WeihererEigenbergerEggeretal., author = {Weiherer, Maximilian and Eigenberger, Andreas and Egger, Bernhard and Br{\´e}bant, Vanessa and Prantl, Lukas and Palm, Christoph}, title = {Learning the shape of female breasts: an open-access 3D statistical shape model of the female breast built from 110 breast scans}, series = {The Visual Computer}, volume = {39}, journal = {The Visual Computer}, number = {4}, publisher = {Springer Nature}, doi = {10.1007/s00371-022-02431-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-30506}, pages = {1597 -- 1616}, abstract = {We present the Regensburg Breast Shape Model (RBSM)—a 3D statistical shape model of the female breast built from 110 breast scans acquired in a standing position, and the first publicly available. Together with the model, a fully automated, pairwise surface registration pipeline used to establish dense correspondence among 3D breast scans is introduced. Our method is computationally efficient and requires only four landmarks to guide the registration process. A major challenge when modeling female breasts from surface-only 3D breast scans is the non-separability of breast and thorax. In order to weaken the strong coupling between breast and surrounding areas, we propose to minimize the variance outside the breast region as much as possible. To achieve this goal, a novel concept called breast probability masks (BPMs) is introduced. A BPM assigns probabilities to each point of a 3D breast scan, telling how likely it is that a particular point belongs to the breast area. During registration, we use BPMs to align the template to the target as accurately as possible inside the breast region and only roughly outside. This simple yet effective strategy significantly reduces the unwanted variance outside the breast region, leading to better statistical shape models in which breast shapes are quite well decoupled from the thorax. The RBSM is thus able to produce a variety of different breast shapes as independently as possible from the shape of the thorax. Our systematic experimental evaluation reveals a generalization ability of 0.17 mm and a specificity of 2.8 mm. To underline the expressiveness of the proposed model, we finally demonstrate in two showcase applications how the RBSM can be used for surgical outcome simulation and the prediction of a missing breast from the remaining one. Our model is available at https://www.rbsm.re-mic.de/.}, language = {en} } @article{SteigerFoltanPhilippetal., author = {Steiger, Tamara and Foltan, Maik and Philipp, Alois and Mueller, Thomas and Gruber, Michael Andreas and Bredthauer, Andre and Krenkel, Lars and Birkenmaier, Clemens and Lehle, Karla}, title = {Accumulations of von Willebrand factor within ECMO oxygenators: Potential indicator of coagulation abnormalities in critically ill patients?}, series = {Artificial Organs}, volume = {43}, journal = {Artificial Organs}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {1525-1594}, doi = {10.1111/aor.13513}, pages = {1065 -- 1076}, abstract = {Clot formation within membrane oxygenators (MOs) remains a critical problem during extracorporeal membrane oxygenation (ECMO). The composition of the clots-in particular, the presence of von Willebrand factor (vWF)-may be an indicator for prevalent nonphysiological flow conditions, foreign body reactions, or coagulation abnormalities in critically ill patients. Mats of interwoven gas exchange fibers from randomly collected MOs (PLS, Maquet, Rastatt, Germany) of 21 patients were stained with antibodies (anti-vWF and anti-P-selectin) and counterstained with 4 ',6-diamidino-2-phenylindole. The extent of vWF-loading was correlated with patient and technical data. While 12 MOs showed low vWF-loadings, 9 MOs showed high vWF-loading with highest accumulations close to crossing points of adjacent gas fibers. The presence and the extent of vWF-fibers/"cobwebs," leukocytes, platelet-leukocyte aggregates (PLAs), and P-selectin-positive platelet aggregates were independent of the extent of vWF-loading. However, the highly loaded MOs were obtained from patients with a significantly elevated SOFA score, severe thrombocytopenia, and persistent liver dysfunction. The coagulation abnormalities of these critically ill patients may cause an accumulation of the highly thrombogenic and elongated high-molecular-weight vWF multimers in the plasma which will be trapped in the MOs during the ECMO therapy.}, language = {en} } @inproceedings{ChangLinLeeetal., author = {Chang, Ching-Sheng and Lin, Jin-Fa and Lee, Ming-Ching and Palm, Christoph}, title = {Semantic Lung Segmentation Using Convolutional Neural Networks}, series = {Bildverarbeitung f{\"u}r die Medizin 2020. Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 15. bis 17. M{\"a}rz 2020 in Berlin}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2020. Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 15. bis 17. M{\"a}rz 2020 in Berlin}, editor = {Tolxdorff, Thomas and Deserno, Thomas M. and Handels, Heinz and Maier, Andreas and Maier-Hein, Klaus H. and Palm, Christoph}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-29266-9}, doi = {10.1007/978-3-658-29267-6_17}, pages = {75 -- 80}, abstract = {Chest X-Ray (CXR) images as part of a non-invasive diagnosis method are commonly used in today's medical workflow. In traditional methods, physicians usually use their experience to interpret CXR images, however, there is a large interobserver variance. Computer vision may be used as a standard for assisted diagnosis. In this study, we applied an encoder-decoder neural network architecture for automatic lung region detection. We compared a three-class approach (left lung, right lung, background) and a two-class approach (lung, background). The differentiation of left and right lungs as direct result of a semantic segmentation on basis of neural nets rather than post-processing a lung-background segmentation is done here for the first time. Our evaluation was done on the NIH Chest X-ray dataset, from which 1736 images were extracted and manually annotated. We achieved 94:9\% mIoU and 92\% mIoU as segmentation quality measures for the two-class-model and the three-class-model, respectively. This result is very promising for the segmentation of lung regions having the simultaneous classification of left and right lung in mind.}, subject = {Neuronales Netz}, language = {en} } @article{PhilippdeSomerFoltanetal., author = {Philipp, Alois and de Somer, Filip and Foltan, Maik and Bredthauer, Andre and Krenkel, Lars and Zeman, Florian and Lehle, Karla}, title = {Life span of different extracorporeal membrane systems for severe respiratory failure in the clinical practice}, series = {PLOS ONE}, volume = {13}, journal = {PLOS ONE}, number = {6}, publisher = {PLOS}, doi = {10.1371/journal.pone.0198392}, pages = {1 -- 10}, abstract = {Over the past decade, veno-venous extracorporeal membrane oxygenation (vvECMO) has been increasingly utilized in respiratory failure in patients. This study presents our institution´s experience focusing on the life span of ECMO systems reflecting the performance of a particular system. A retrospective review of our ECMO database identified 461 adult patients undergoing vvECMO (2010-2017). Patients that required more than one system and survived the first exchange >24 hours (n = 139) were included. Life span until the first exchange and exchange criteria were analyzed for all systems (PLS, Cardiohelp HLS-set, both Maquet Cardiopulmonary, Rastatt, Germany; Deltastream/Hilite7000LT, iLA-activve, Xenios/NovaLung, Heilbronn, Germany; ECC.O5, LivaNova, Mirandola, Italy). At our ECMO center, the frequency of a system exchange was 30\%. The median (IQR) life span was 9 (6-12) days. There was no difference regarding the different systems (p = 0.145 and p = 0.108, respectively). However, the Deltastream systems were exchanged more frequently due to elective technical complications (e. g. worsened gas transfer, development of coagulation disorder, increased bleedings complications) compared to the other exchanged systems (p = 0.013). In summary, the used ECMO systems are safe and effective for acute respiratory failure. There is no evidence for the usage of a specific system. Only the increased predictability of an imminent exchange preferred the usage of a Deltastream system. However, the decision to use a particular system should not depend solely on the possible criteria for an exchange.}, language = {en} } @inproceedings{DiehlWolffFuhrmannetal., author = {Diehl, Andreas and Wolff, Lilli and Fuhrmann, Thomas and Niemetz, Michael and M{\"o}rtlbauer, Stefanie and Dirnberger, Sandra}, title = {Compact Freshmen Welcome Seminar for Engineering Students}, series = {Procedia - Social and Behavioral Sciences}, booktitle = {Procedia - Social and Behavioral Sciences}, number = {228}, publisher = {Elsevier}, doi = {10.1016/j.sbspro.2016.07.007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-31034}, pages = {45 -- 52}, abstract = {The Faculty of Electrical Engineering and Information Technology of the OTH Regensburg developed and implemented a compact freshmen seminar for the afternoon of the first day of study. The intention of this seminar is to help the freshmen during their transition between school and study without losing lecture time in the first semester. The concept was tested with one small study group at the beginning of the summer semester 2015. To rate the impact of the seminar and to find aspects for continuous improvement an evaluation method was developed and used. Due to the good student resonance during the first run, this introduction seminar was held again in the winter semester 2015/16. It is planned to integrate this seminar as a regular session for all freshmen of the faculty curriculum and monitor the long-term effects of student motivation and success.}, language = {en} } @inproceedings{SchaefferHerrmannBoehm, author = {Schaeffer, Leon and Herrmann, David and B{\"o}hm, Valter}, title = {Theoretical considerations on a 2D compliant tensegrity joint in context of a biomedical application}, series = {Engineering for a changing world : 60th ISC, Ilmenau Scientific Colloquium, Technische Universit{\"a}t Ilmenau, September 4-8, 2023}, booktitle = {Engineering for a changing world : 60th ISC, Ilmenau Scientific Colloquium, Technische Universit{\"a}t Ilmenau, September 4-8, 2023}, publisher = {Technische Universit{\"a}t Ilmenau}, address = {Ilmenau}, doi = {10.22032/dbt.58879}, pages = {1 -- 15}, abstract = {In this paper, a two-dimensional compliant tensegrity joint was investigated for potential biomedical applications such as orthotics or exoskeletons. The structure consists of two compressed members connected by five compliant tensioned members. The concept is based on the tensegrity principle, which allows the realization of dynamic orthoses without conventional hinge joints. Another advantage is the adaptability to the individual needs of the patient through a suitable design of the structure and the careful selection of the characteristics of the elements. Using geometric nonlinear analysis, the mechanical behavior of the structure was investigated, focusing on mechanical compliance. The main objective was to determine the influence of the initial length and stiffness of the tensioned members and the influence of the magnitude of external forces on the overall stiffness of the movable member of the structure. The results highlight the significant impact of member parameters on the structure's stiffness and movability under varying load magnitudes. The research laid the foundation for future development of dynamic orthoses based on this structure.}, language = {en} } @inproceedings{SchaefferHerrmannBoehm, author = {Schaeffer, Leon and Herrmann, David and B{\"o}hm, Valter}, title = {Preliminary considerations on the form-finding of a tensegrity joint to be used in dynamic orthoses}, series = {8th International Conference on Biomedical Engineering and Applications (ICBEA 2024), Tokio, 18-21. March 2024}, booktitle = {8th International Conference on Biomedical Engineering and Applications (ICBEA 2024), Tokio, 18-21. March 2024}, edition = {accepted paper}, publisher = {ACM}, language = {en} } @inproceedings{Fuhrmann, author = {Fuhrmann, Thomas}, title = {Motivation Centered Learning}, series = {2018 IEEE Frontiers in Education Conference (FIE), 3-6 Oct. 2018, San Jose, CA, USA}, booktitle = {2018 IEEE Frontiers in Education Conference (FIE), 3-6 Oct. 2018, San Jose, CA, USA}, publisher = {IEEE}, doi = {10.1109/FIE.2018.8658436}, pages = {1 -- 5}, abstract = {This Research Work in Progress Paper evaluates students' motivation sources and shows the high impact that work of professors has on students' motivation. Common goal of most professors is to help students acquiring knowledge and competencies that are relevant for their further life. From the beginning of Universities' history, lectures are usually chosen to reach this goal but it is seen in recent years that they are in many cases not the optimal choice. In the last years, many efforts were made to increase students knowledge gain. From learning and motivation psychology research, many details are known how humans remember and transfer knowledge. These research results are used to create new lecture formats to activate students. Research based learning, project based lab courses, problem based learning, feedback systems, flipped classroom, blended learning and gamification in lectures are only some examples for new formats. Common goal of all these new types of learning formats is to increasing students' motivation and to enhance learning success. In this paper, evaluations using a questionnaire with open questions were done among first year students, bachelor students before graduation and alumni, about their sources of motivation and demotivation. Interesting curricula and lectures with application related topics and possibilities for own work are the main sources of motivation. Enthusiastic professors with high competences and good lecture didactics also contribute to students' motivation. On the other side, demotivated professors with boring lectures play a much higher role for demotivating students. Therefore, it is necessary to integrate aspects of student motivation into curriculum and lecture design and professors should become aware that they are important role-models for motivating or demotivating students.}, language = {en} } @inproceedings{WickLindnerZimmeretal., author = {Wick, Michael and Lindner, Gerhard and Zimmer, Katja and Schreiner, Rupert and Fuhrmann, Thomas and Seebauer, Gudrun and Xu, Boqing and Zheng, Jihong and Wang, Ning}, title = {German-Chinese cooperative Bachelor in engineering physics/optoelectronics}, series = {14th Conference on Education and Training in Optics and Photonics: ETOP 2017; Hangzhou, China 29.05.2017 - 31.05.2017}, booktitle = {14th Conference on Education and Training in Optics and Photonics: ETOP 2017; Hangzhou, China 29.05.2017 - 31.05.2017}, editor = {Liu, Xu and Zhang, Xi-Cheng}, publisher = {SPIE}, isbn = {9781510613812}, doi = {10.1117/12.2269943}, abstract = {The University of Shanghai for Science and Technology (USST), the Coburg University of Applied Sciences and Arts (CUASA) and the OTH Regensburg, University of Applied Sciences (OTHR) established an English taught international cooperative bachelor program in the area of Engineering Physics/Optoelectronics. Students from China study their first four semesters at USST. They continue their studies in Germany for the last three semesters, including an internship and a bachelor thesis, graduating with a Chinese and a German bachelor degree. Students from Germany study their third and fourth semester at USST to gain international experience. While the first cohort of Chinese students is currently in Germany, the second cohort of German students is in Shanghai. Up to now the feedback regarding this study program is completely positive, thus it is planned to develop it further.}, language = {en} } @article{KratzerWestnerStrahringer, author = {Kratzer, Simon and Westner, Markus and Strahringer, Susanne}, title = {Traction with fraction: Strategic IS management in SMEs through Fractional CIOs}, series = {International Journal of Information Systems and Project Management}, volume = {12}, journal = {International Journal of Information Systems and Project Management}, number = {1}, issn = {2182-7788}, doi = {10.12821/ijispm120101}, pages = {5 -- 16}, abstract = {Small and medium-sized enterprises (SMEs) increasingly need to manage nformation technology (IT) effectively in order to remain competitive. However, compared to larger organizations, SMEs often face challenges in terms of resources and employer attractiveness, and regularly do not have the need to employ a Chief Information Officer (CIO) on a full-time basis. To address this issue, a growing number of global experts have begun to provide CIO services on a part-time basis for multiple clients simultaneously. This approach allows SMEs to tap into the expertise of experienced IT leaders at a fraction of the cost and without committing to long-term arrangements. While these professionals, known as "Fractional CIOs", have proven their value in the field, there has been a lack of academic research on this emerging trend. Therefore, we carried out a comprehensive research project between 2020 and 2023, involving 62 Fractional CIOs from 10 countries. The research produced a definition, different types of engagements, and success factors for Fractional CIOs and their engagements. This paper summarizes these findings for a wider audience of academics and practitioners.}, language = {en} } @article{WestnerKratzerDrechsleretal., author = {Westner, Markus and Kratzer, Simon and Drechsler, Andreas and Strahringer, Susanne}, title = {The Fractional CIO in SMEs: conceptualization and research agenda}, series = {Information Systems and e-Business Management}, volume = {20}, journal = {Information Systems and e-Business Management}, publisher = {Springer}, doi = {10.1007/s10257-022-00557-4}, pages = {581 -- 611}, abstract = {We conceptualize the new phenomenon of the Fractional Chief InformationOfficer (CIO) as a part-time executive who usually works for more than one pri-marily small- to medium-sized enterprise (SME) and develop promising avenuesfor future research on Fractional CIOs. We conduct an empirical study by drawingon semi-structured interviews with 40 individuals from 10 different countries whooccupy a Fractional CIO role. We derive a definition for the Fractional CIO, dis-tinguish it from other forms of employment, and compare it with existing researchon CIO roles. Further, we find four salient engagement types of Fractional CIOsoffering value for SMEs in various situations: Strategic IT management, Restruc-turing, Rapid scaling, and Hands-on support. The results reveal similarities withexisting CIO roles as well as novel insights concerning the different engagementtypes. Lastly, we propose a research agenda for the Fractional CIO field, based onfour research themes derived from existing CIO research and insights from theinterviews.}, language = {en} } @article{BartschBehamGebhardtetal., author = {Bartsch, Alexander and Beham, Daniela and Gebhardt, Jakob and Ehrlich, Ingo and Schratzenstaller, Thomas and Monkman, Gareth J.}, title = {Mechanical Properties of NdPrFeB Based Magnetoactive Bisphenol-Free Boron-Silicate Polymers}, series = {Journal of Nanomedicine and Nanotechnology}, volume = {14}, journal = {Journal of Nanomedicine and Nanotechnology}, number = {6}, publisher = {Walsh Medical Media}, issn = {2157-7439}, doi = {10.35248/2157-7439.23.14.705}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-67425}, abstract = {Following a ban on many materials containing bisphenol-A, new bisphenol-free Boron silicates have been found as substitutes. The purpose of this study is to describe the mechanical properties of these bisphenol-free magnetoactive borosilicate polymers containing hard magnetic particles. Samples of 0\%, 33\% and 66\% by wt. were loaded for compression using a universal testing machine. The maximum forces occurring for different travel speeds were compared before and after post-magnetization treatments. The post-magnetization included 2 stages. In addition, the change in mechanical properties within 24 hours after the post-magnetization process was investigated. Furthermore, the influence of speed and particle content were investigated. In general, there is a correlation between the required compressive force and, the level of post-magnetization stress, the increase in travel speed and particle content in the boron silicate. Comparison of the non-post-magnetized and post-magnetized samples using two-tailed t-tests shows that the p-values for all weight fraction changes in NdPrFeB particles and travel speeds are less than 0.001. Also, a comparison between tests in which the traverse speed was varied also showed significant changes in the resulting compression forces. The same is valid for changes in the weight ratio of the NdPrFeB particles in the samples. For post-magnetized samples, no significant difference can be observed in the first 24 hours following magnetization. In summary, the material presents viscoelastic, plastic force-displacement behavior, which can be well recognized by its bi-linear curve shape. The investigation shows that borosilicate polymers based on NdPrFeB can have their mechanical behavior modified and controlled by post-magnetization processes. This opens new possibilities for many future applications.}, language = {en} } @article{KoenigGuertler, author = {Koenig, Eric and Guertler, Katherine}, title = {One Size Does Not Fit All: Individuality and Perceptions of Improvement and Satisfaction Among TE Students}, series = {English Teaching \& Learning}, volume = {45}, journal = {English Teaching \& Learning}, number = {3}, publisher = {Springer Science and Business Media}, issn = {1023-7267}, doi = {10.1007/s42321-021-00076-4}, pages = {303 -- 324}, abstract = {Academic self-regulation is a key factor for motivation and learning achievement. Yet with the large range of individual factors, this is not a one-size-fits-all proposition. This study of L2 Technical English students at two German universities explored learners' expectations and motivations, in particular regarding self-regulation and self-efficacy via the individual's time investment in self-led study. In an initial survey, learners (N=1646) reported on their English skill levels and anticipated learning habits. Complementarily, the retrospective survey investigated learners' (N=796) actual behavior during the course, their perceptions of language skill improvement, and their satisfaction. The initial survey indicates a clear understanding that time investment in self-regulated study will lead to greater improvement, an outcome confirmed in the retrospective survey. Additionally, students who invested more time in their coursework were more satisfied with their achievement, although most learners acknowledge they should have studied more. The results verify that learners recognize the nexus between self-regulation and language skill improvement, yet university students are not satisfied with their capacity to self-regulate their language learning strategies. While differences in students' skill levels and academic self-efficacy result in divergent degrees of progress, students of all types report benefits to their language skills when motivated to self-regulated study.}, language = {en} } @misc{ScheppachMendelProbstetal., author = {Scheppach, Markus W. and Mendel, Robert and Probst, Andreas and Meinikheim, Michael and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Artificial Intelligence (AI) - assisted vessel and tissue recognition during third space endoscopy (Smart ESD)}, series = {Zeitschrift f{\"u}r Gastroenterologie}, volume = {60}, journal = {Zeitschrift f{\"u}r Gastroenterologie}, number = {08}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/s-0042-1755110}, abstract = {Clinical setting Third space procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex minimally invasive techniques with an elevated risk for operator-dependent adverse events such as bleeding and perforation. This risk arises from accidental dissection into the muscle layer or through submucosal blood vessels as the submucosal cutting plane within the expanding resection site is not always apparent. Deep learning algorithms have shown considerable potential for the detection and characterization of gastrointestinal lesions. So-called AI - clinical decision support solutions (AI-CDSS) are commercially available for polyp detection during colonoscopy. Until now, these computer programs have concentrated on diagnostics whereas an AI-CDSS for interventional endoscopy has not yet been introduced. We aimed to develop an AI-CDSS („Smart ESD") for real-time intra-procedural detection and delineation of blood vessels, tissue structures and endoscopic instruments during third-space endoscopic procedures. Characteristics of Smart ESD An AI-CDSS was invented that delineates blood vessels, tissue structures and endoscopic instruments during third-space endoscopy in real-time. The output can be displayed by an overlay over the endoscopic image with different modes of visualization, such as a color-coded semitransparent area overlay, or border tracing (demonstration video). Hereby the optimal layer for dissection can be visualized, which is close above or directly at the muscle layer, depending on the applied technique (ESD or POEM). Furthermore, relevant blood vessels (thickness> 1mm) are delineated. Spatial proximity between the electrosurgical knife and a blood vessel triggers a warning signal. By this guidance system, inadvertent dissection through blood vessels could be averted. Technical specifications A DeepLabv3+ neural network architecture with KSAC and a 101-layer ResNeSt backbone was used for the development of Smart ESD. It was trained and validated with 2565 annotated still images from 27 full length third-space endoscopic videos. The annotation classes were blood vessel, submucosal layer, muscle layer, electrosurgical knife and endoscopic instrument shaft. A test on a separate data set yielded an intersection over union (IoU) of 68\%, a Dice Score of 80\% and a pixel accuracy of 87\%, demonstrating a high overlap between expert and AI segmentation. Further experiments on standardized video clips showed a mean vessel detection rate (VDR) of 85\% with values of 92\%, 70\% and 95\% for POEM, rectal ESD and esophageal ESD respectively. False positive measurements occurred 0.75 times per minute. 7 out of 9 vessels which caused intraprocedural bleeding were caught by the algorithm, as well as both vessels which required hemostasis via hemostatic forceps. Future perspectives Smart ESD performed well for vessel and tissue detection and delineation on still images, as well as on video clips. During a live demonstration in the endoscopy suite, clinical applicability of the innovation was examined. The lag time for processing of the live endoscopic image was too short to be visually detectable for the interventionist. Even though the algorithm could not be applied during actual dissection by the interventionist, Smart ESD appeared readily deployable during visual assessment by ESD experts. Therefore, we plan to conduct a clinical trial in order to obtain CE-certification of the algorithm. This new technology may improve procedural safety and speed, as well as training of modern minimally invasive endoscopic resection techniques.}, subject = {Bildgebendes Verfahren}, language = {en} } @misc{MeinikheimMendelScheppachetal., author = {Meinikheim, Michael and Mendel, Robert and Scheppach, Markus W. and Probst, Andreas and Prinz, Friederike and Schwamberger, Tanja and Schlottmann, Jakob and G{\"o}lder, Stefan Karl and Walter, Benjamin and Steinbr{\"u}ck, Ingo and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {INFLUENCE OF AN ARTIFICIAL INTELLIGENCE (AI) BASED DECISION SUPPORT SYSTEM (DSS) ON THE DIAGNOSTIC PERFORMANCE OF NON-EXPERTS IN BARRETT´S ESOPHAGUS RELATED NEOPLASIA (BERN)}, series = {Endoscopy}, volume = {54}, journal = {Endoscopy}, number = {S 01}, publisher = {Thieme}, doi = {10.1055/s-00000012}, pages = {S39}, abstract = {Aims Barrett´s esophagus related neoplasia (BERN) is difficult to detect and characterize during endoscopy, even for expert endoscopists. We aimed to assess the add-on effect of an Artificial Intelligence (AI) algorithm (Barrett-Ampel) as a decision support system (DSS) for non-expert endoscopists in the evaluation of Barrett's esophagus (BE) and BERN. Methods Twelve videos with multimodal imaging white light (WL), narrow-band imaging (NBI), texture and color enhanced imaging (TXI) of histologically confirmed BE and BERN were assessed by expert and non-expert endoscopists. For each video, endoscopists were asked to identify the area of BERN and decide on the biopsy spot. Videos were assessed by the AI algorithm and regions of BERN were highlighted in real-time by a transparent overlay. Finally, endoscopists were shown the AI videos and asked to either confirm or change their initial decision based on the AI support. Results Barrett-Ampel correctly identified all areas of BERN, irrespective of the imaging modality (WL, NBI, TXI), but misinterpreted two inflammatory lesions (Accuracy=75\%). Expert endoscopists had a similar performance (Accuracy=70,8\%), while non-experts had an accuracy of 58.3\%. When AI was implemented as a DSS, non-expert endoscopists improved their diagnostic accuracy to 75\%. Conclusions AI may have the potential to support non-expert endoscopists in the assessment of videos of BE and BERN. Limitations of this study include the low number of videos used. Randomized clinical trials in a real-life setting should be performed to confirm these results.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @article{ScheppachMendelProbstetal., author = {Scheppach, Markus W. and Mendel, Robert and Probst, Andreas and Meinikheim, Michael and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {ARTIFICIAL INTELLIGENCE (AI) - ASSISTED VESSEL AND TISSUE RECOGNITION IN THIRD-SPACE ENDOSCOPY}, series = {Endoscopy}, volume = {54}, journal = {Endoscopy}, number = {S01}, publisher = {Thieme}, doi = {10.1055/s-0042-1745037}, pages = {S175}, abstract = {Aims Third-space endoscopy procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex interventions with elevated risk of operator-dependent adverse events, such as intra-procedural bleeding and perforation. We aimed to design an artificial intelligence clinical decision support solution (AI-CDSS, "Smart ESD") for the detection and delineation of vessels, tissue structures, and instruments during third-space endoscopy procedures. Methods Twelve full-length third-space endoscopy videos were extracted from the Augsburg University Hospital database. 1686 frames were annotated for the following categories: Submucosal layer, blood vessels, electrosurgical knife and endoscopic instrument. A DeepLabv3+neural network with a 101-layer ResNet backbone was trained and validated internally. Finally, the ability of the AI system to detect visible vessels during ESD and POEM was determined on 24 separate video clips of 7 to 46 seconds duration and showing 33 predefined vessels. These video clips were also assessed by an expert in third-space endoscopy. Results Smart ESD showed a vessel detection rate (VDR) of 93.94\%, while an average of 1.87 false positive signals were recorded per minute. VDR of the expert endoscopist was 90.1\% with no false positive findings. On the internal validation data set using still images, the AI system demonstrated an Intersection over Union (IoU), mean Dice score and pixel accuracy of 63.47\%, 76.18\% and 86.61\%, respectively. Conclusions This is the first AI-CDSS aiming to mitigate operator-dependent limitations during third-space endoscopy. Further clinical trials are underway to better understand the role of AI in such procedures.}, language = {en} } @article{HartmannNieberlePalmetal., author = {Hartmann, Robin and Nieberle, Felix and Palm, Christoph and Br{\´e}bant, Vanessa and Prantl, Lukas and Kuehle, Reinald and Reichert, Torsten E. and Taxis, Juergen and Ettl, Tobias}, title = {Utility of Smartphone-based Three-dimensional Surface Imaging for Digital Facial Anthropometry}, series = {JPRAS Open}, volume = {39}, journal = {JPRAS Open}, publisher = {Elsevier}, doi = {10.1016/j.jpra.2024.01.014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-70348}, pages = {330 -- 343}, abstract = {Background The utilization of three-dimensional (3D) surface imaging for facial anthropometry is a significant asset for patients undergoing maxillofacial surgery. Notably, there have been recent advancements in smartphone technology that enable 3D surface imaging. In this study, anthropometric assessments of the face were performed using a smartphone and a sophisticated 3D surface imaging system. Methods 30 healthy volunteers (15 females and 15 males) were included in the study. An iPhone 14 Pro (Apple Inc., USA) using the application 3D Scanner App (Laan Consulting Corp., USA) and the Vectra M5 (Canfield Scientific, USA) were employed to create 3D surface models. For each participant, 19 anthropometric measurements were conducted on the 3D surface models. Subsequently, the anthropometric measurements generated by the two approaches were compared. The statistical techniques employed included the paired t-test, paired Wilcoxon signed-rank test, Bland-Altman analysis, and calculation of the intraclass correlation coefficient (ICC). Results All measurements showed excellent agreement between smartphone-based and Vectra M5-based measurements (ICC between 0.85 and 0.97). Statistical analysis revealed no statistically significant differences in the central tendencies for 17 of the 19 linear measurements. Despite the excellent agreement found, Bland-Altman analysis revealed that the 95\% limits of agreement between the two methods exceeded ±3 mm for the majority of measurements. Conclusion Digital facial anthropometry using smartphones can serve as a valuable supplementary tool for surgeons, enhancing their communication with patients. However, the proposed data suggest that digital facial anthropometry using smartphones may not yet be suitable for certain diagnostic purposes that require high accuracy.}, language = {en} }