@article{KnoedlerKnoedlerKaukeNavarroetal., author = {Kn{\"o}dler, Leonard and Kn{\"o}dler, Samuel and Kauke-Navarro, Martin and Kn{\"o}dler, Christoph and H{\"o}fer, Simon and B{\"a}cher, Helena and Gassner, Ulrich M. and Machens, Hans-G{\"u}nther and Prantl, Lukas and Panayi, Adriana}, title = {Three-dimensional Medical Printing and Associated Legal Issues in Plastic Surgery: A Scoping Review}, series = {Plastic \& Reconstructive Surgery-Global Open}, volume = {11}, journal = {Plastic \& Reconstructive Surgery-Global Open}, number = {4}, publisher = {Wolters Kluwer}, issn = {2169-7574}, doi = {10.1097/GOX.0000000000004965}, abstract = {Three-dimensional printing (3DP) represents an emerging field of surgery. 3DP can facilitate the plastic surgeon's workflow, including preoperative planning, intraoperative assistance, and postoperative follow-up. The broad clinical application spectrum stands in contrast to the paucity of research on the legal framework of 3DP. This imbalance poses a potential risk for medical malpractice lawsuits. To address this knowledge gap, we aimed to summarize the current body of legal literature on medical 3DP in the US legal system. By combining the promising clinical use of 3DP with its current legal regulations, plastic surgeons can enhance patient safety and outcomes.}, language = {en} } @article{LotterBrebantEigenbergeretal., author = {Lotter, Luisa and Brebant, Vanessa and Eigenberger, Andreas and Hartmann, Robin and Mueller, Karolina and Baringer, Magnus and Prantl, Lukas and Schiltz, Daniel}, title = {"Topographic Shift": a new digital approach to evaluating topographic changes of the female breast}, series = {Archives of Gynecology and Obstetrics}, volume = {303}, journal = {Archives of Gynecology and Obstetrics}, number = {2}, publisher = {Springer Nature}, doi = {10.1007/s00404-020-05837-3}, pages = {515 -- 520}, abstract = {Purpose To assess precise topographic changes of the breast, objective documentation and evaluation of pre- and postoperative results are crucial. New technologies for mapping the body using digital, three-dimensional surface measurements have offered novel ways to numerically assess the female breast. Due to the lack of clear demarcation points of the breast contour, the selection of landmarks on the breast is highly dependent on the examiner, and, therefore, is prone to error when conducting before-after comparisons of the same breast. This study describes an alternative to volumetric measurements, focusing on topographic changes of the female breast, based on three-dimensional scans. Method The study was designed as an interventional prospective study of 10 female volunteers who had planned on having aesthetic breast augmentation with anatomical, textured implants. Three dimensional scans of the breasts were performed intraoperatively, first without and then with breast implants. The topographic change was determined as the mean distance between two three-dimensional layers before and after augmentation. This mean distance is defined as the Topographic Shift. Results The mean implant volume was 283 cc (SD = 68.6 cc, range = 210-395 cc). The mean Topographic Shift was 7.4 mm (SD = 1.9 mm, range = 4.8-10.7 mm). The mean Topographic Shifts per quadrant were: I: 8.0 mm (SD = 3.3 mm); II: 9.2 mm (SD = 3.1 mm); III: 6.9 mm (SD = 3.5 mm); IV: 1.9 mm (SD = 4.3 mm). Conclusion The Topographic Shift, describing the mean distance between two three-dimensional layers (for example before and after a volume changing therapy), is a new approach that can be used for assessing topographic changes of a body area. It was found that anatomical, textured breast implants cause a topographic change, particularly on the upper breast, in quadrant II, the decollete.}, language = {en} } @article{NoisserEigenbergerWeihereretal., author = {Noisser, Vivien and Eigenberger, Andreas and Weiherer, Maximilian and Seitz, Stephan and Prantl, Lukas and Br{\´e}bant, Vanessa}, title = {Surgery of congenital breast asymmetry - which objective parameter influences the subjective satisfaction with long-term results}, series = {Archives of Gynecology and Obstetrics}, journal = {Archives of Gynecology and Obstetrics}, publisher = {Springer Nature}, doi = {10.1007/s00404-021-06218-0}, pages = {8}, abstract = {Purpose Congenital breast asymmetry is a serious gynecological malformation for affected patients. The condition hits young women in puberty and is associated with socio-esthetic handicap, depression, and psychosexual problems. Surgical treatment is usually early in the patient's lifetime, so a long-term sustainable solution is important. Although postoperative outcome has been evaluated in several studies before, this study is the first to analyze which objective parameters have the greatest influence on subjective satisfaction with long-term results. Methods Thirty-four patients diagnosed with congenital breast asymmetry that underwent either lipofilling or implant therapy between the years of 2008 to 2019 were examined. On average, our collective comprised patients seven years after surgery. Data were mainly gathered through manual measurements, patient-reported outcome measures (Breast Q™), and breast volumetry based on 3D scans (Vectra® H2, Canfield Scientific). Results Among all analyzed parameters, only areolar diameter correlated significantly negatively with the subjective outcome satisfaction of the patient. Regarding the subjective assessment of postoperative satisfaction with similarity of the breasts, again the mean areolar diameter, but also the difference in areolar diameter and breast volume between the right and left breasts correlated significantly negatively. Conclusion Areolar diameter was revealed as being a significant factor influencing subjective long-term satisfaction in breast asymmetry patients. Moreover, 3D volumetry proves to be an effective tool to substantiate subjective patient assessments. Our findings may lead to further improvements to surgical planning and will be expanded in further studies.}, language = {en} } @article{PrantlEigenbergerGehmertetal., author = {Prantl, Lukas and Eigenberger, Andreas and Gehmert, Sebastian and Haerteis, Silke and Aung, Thiha and Rachel, Reinhard and Jung, Ernst Michael and Felthaus, Oliver}, title = {Enhanced Resorption of Liposomal Packed Vitamin C Monitored by Ultrasound}, series = {Journal of Clinical Medicine}, volume = {9}, journal = {Journal of Clinical Medicine}, number = {6}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/jcm9061616}, pages = {1 -- 12}, abstract = {Vitamin C is an essential nutrient for humans and is involved in a plethora of health-related functions. Several studies have shown a connection between vitamin C intake and an improved resistance to infections that involves the immune system. However, the body cannot store vitamin C and both the elevated oral intake, and the intravenous application have certain disadvantages. In this study, we wanted to show a new formulation for the liposomal packaging of vitamin C. Using freeze etching electron microscopy, we show the formed liposomes. With a novel approach of post-processing procedures of real-time sonography that combines enhancement effects by contrast-like ultrasound with a transducer, we wanted to demonstrate the elevated intestinal vitamin C resorption on four participants. With the method presented in this study, it is possible to make use of the liposomal packaging of vitamin C with simple household materials and equipment for intake elevation. For the first time, we show the enhanced resorption of ingested liposomes using microbubble enhanced ultrasound imaging.}, language = {en} } @article{PrantlEigenbergerKleinetal., author = {Prantl, Lukas and Eigenberger, Andreas and Klein, Silvan and Limm, Katharina and Oefner, Peter J. and Schratzenstaller, Thomas and Felthaus, Oliver}, title = {Shear Force Processing of Lipoaspirates for Stem Cell Enrichment Does Not Affect Secretome of Human Cells Detected by Mass Spectrometry In Vitro}, series = {Plastic and Reconstructive Surgery}, volume = {146}, journal = {Plastic and Reconstructive Surgery}, number = {6}, publisher = {American Society of Plastic Surgeons}, doi = {10.1097/PRS.0000000000007343}, pages = {749e -- 758e}, abstract = {Background: Lipofilling is one of the most often performed surgical procedures in plastic and reconstructive surgery. Lipoaspirates provide a ready source of stem cells and secreted factors that contribute to neoangiogenesis and fat graft survival. However, the regulations about the enrichment of these beneficial cells and factors are ambiguous. In this study, the authors tested whether a combination of centrifugation and homogenization allowed the enrichment of viable stem cells in lipoaspirates through the selective removal of tumescent solution, blood, and released lipids without significantly affecting the cell secretome. Methods: Human lipoaspirate was harvested from six different patients using water jet-assisted liposuction. Lipoaspirate was homogenized by first centrifugation (3584 rpm for 2 minutes), shear strain (10 times intersyringe processing), and second centrifugation (3584 rpm for 2 minutes). Stem cell enrichment was shown by cell counting after stem cell isolation. Lipoaspirate from different processing steps (unprocessed, after first centrifugation, after homogenization, after second centrifugation) was incubated in serum-free cell culture medium for mass spectrometric analysis of secreted proteins. Results: Lipoaspirate homogenization leads to a significant 2.6 ± 1.75-fold enrichment attributable to volume reduction without reducing the viability of the stem cells. Protein composition of the secretome did not change significantly after tissue homogenization. Considering the enrichment effects, there were no significant differences in the protein concentration of the 83 proteins found in all processing steps. Conclusions: Stem cells can be enriched mechanically without significantly affecting the composition of secreted proteins. Shear-assisted enrichment of lipoaspirate constitutes no substantial manipulation of the cells' secretome.}, language = {en} } @article{PrantlEigenbergerReinhardetal., author = {Prantl, Lukas and Eigenberger, Andreas and Reinhard, Ruben and Siegmund, Andreas and Heumann, Kerstin and Felthaus, Oliver}, title = {Cell-Enriched Lipotransfer (CELT) Improves Tissue Regeneration and Rejuvenation without Substantial Manipulation of the Adipose Tissue Graft}, series = {Cells}, volume = {11}, journal = {Cells}, number = {19}, publisher = {MDPI}, doi = {10.3390/cells11193159}, pages = {1 -- 11}, abstract = {The good availability and the large content of adult stem cells in adipose tissue has made it one of the most interesting tissues in regenerative medicine. Although lipofilling is one of the most frequent procedures in plastic surgery, the method still struggles with high absorption rates and volume losses of up to 70\%. Therefore, many efforts have been made to optimize liposuction and to process the harvested tissue in order to increase fat graft retention. Because of their immunomodulatory properties, their cytokine secretory activity, and their differentiation potential, enrichment with adipose tissue-derived stem cells was identified as a promising tool to promote transplant survival. Here, we review the important parameters for lipofilling optimization. Finally, we present a new method for the enrichment of lipoaspirate with adipose tissue-derived stem cells and discuss the parameters that contribute to fat graft survival.}, language = {en} } @article{RueweEigenbergerKleinetal., author = {Ruewe, Marc and Eigenberger, Andreas and Klein, Silvan and von Riedheim, Antonia and Gugg, Christine and Prantl, Lukas and Palm, Christoph and Weiherer, Maximilian and Zeman, Florian and Anker, Alexandra}, title = {Precise Monitoring of Returning Sensation in Digital Nerve Lesions by 3-D Imaging: A Proof-of-Concept Study}, series = {Plastic and Reconstructive Surgery}, volume = {152}, journal = {Plastic and Reconstructive Surgery}, number = {4}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia, Pa.}, organization = {American Society of Plastic Surgeons}, issn = {1529-4242}, doi = {10.1097/PRS.0000000000010456}, pages = {670e -- 674e}, abstract = {Digital nerve lesions result in a loss of tactile sensation reflected by an anesthetic area (AA) at the radial or ulnar aspect of the respective digit. Yet, available tools to monitor the recovery of tactile sense have been criticized for their lack of validity. However, the precise quantification of AA dynamics by three-dimensional (3-D) imaging could serve as an accurate surrogate to monitor recovery following digital nerve repair. For validation, AAs were marked on digits of healthy volunteers to simulate the AA of an impaired cutaneous innervation. Three dimensional models were composed from raw images that had been acquired with a 3-D camera (Vectra H2) to precisely quantify relative AA for each digit (3-D models, n= 80). Operator properties varied regarding individual experience in 3-D imaging and image processing. Additionally, the concept was applied in a clinical case study. Images taken by experienced photographers were rated better quality (p< 0.001) and needed less processing time (p= 0.020). Quantification of the relative AA was neither altered significantly by experience levels of the photographer (p= 0.425) nor the image assembler (p= 0.749). The proposed concept allows precise and reliable surface quantification of digits and can be performed consistently without relevant distortion by lack of examiner experience. Routine 3-D imaging of the AA has the great potential to provide visual evidence of various returning states of sensation and to convert sensory nerve recovery into a metric variable with high responsiveness to temporal progress.}, language = {en} } @article{WeihererEigenbergerEggeretal., author = {Weiherer, Maximilian and Eigenberger, Andreas and Egger, Bernhard and Br{\´e}bant, Vanessa and Prantl, Lukas and Palm, Christoph}, title = {Learning the shape of female breasts: an open-access 3D statistical shape model of the female breast built from 110 breast scans}, series = {The Visual Computer}, volume = {39}, journal = {The Visual Computer}, number = {4}, publisher = {Springer Nature}, doi = {10.1007/s00371-022-02431-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-30506}, pages = {1597 -- 1616}, abstract = {We present the Regensburg Breast Shape Model (RBSM)—a 3D statistical shape model of the female breast built from 110 breast scans acquired in a standing position, and the first publicly available. Together with the model, a fully automated, pairwise surface registration pipeline used to establish dense correspondence among 3D breast scans is introduced. Our method is computationally efficient and requires only four landmarks to guide the registration process. A major challenge when modeling female breasts from surface-only 3D breast scans is the non-separability of breast and thorax. In order to weaken the strong coupling between breast and surrounding areas, we propose to minimize the variance outside the breast region as much as possible. To achieve this goal, a novel concept called breast probability masks (BPMs) is introduced. A BPM assigns probabilities to each point of a 3D breast scan, telling how likely it is that a particular point belongs to the breast area. During registration, we use BPMs to align the template to the target as accurately as possible inside the breast region and only roughly outside. This simple yet effective strategy significantly reduces the unwanted variance outside the breast region, leading to better statistical shape models in which breast shapes are quite well decoupled from the thorax. The RBSM is thus able to produce a variety of different breast shapes as independently as possible from the shape of the thorax. Our systematic experimental evaluation reveals a generalization ability of 0.17 mm and a specificity of 2.8 mm. To underline the expressiveness of the proposed model, we finally demonstrate in two showcase applications how the RBSM can be used for surgical outcome simulation and the prediction of a missing breast from the remaining one. Our model is available at https://www.rbsm.re-mic.de/.}, language = {en} } @article{ZellnerHierlMuelleretal., author = {Zellner, Johannes and Hierl, Katja and Mueller, Michael and Pfeifer, Christian and Berner, Arne and Dienstknecht, Thomas and Krutsch, Werner and Geis, Sebastian and Gehmert, Sebastian and Kujat, Richard and Dendorfer, Sebastian and Prantl, Lukas and Nerlich, Michael and Angele, Peter}, title = {Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone}, series = {Journal of Biomedical Materials Research Part B Applied Biomaterials}, volume = {101}, journal = {Journal of Biomedical Materials Research Part B Applied Biomaterials}, number = {7}, editor = {Gilbert, Jeremy}, doi = {10.1002/jbm.b.32922}, pages = {1133 -- 1142}, abstract = {Meniscal tears in the avascular zone have a poor self-healing potential, however partial meniscectomy predisposes the knee for early osteoarthritis. Tissue engineering with mesenchymal stem cells and a hyaluronan collagen based scaffold is a promising approach to repair meniscal tears in the avascular zone. 4 mm longitudinal meniscal tears in the avascular zone of lateral menisci of New Zealand White Rabbits were performed. The defect was left empty, sutured with a 5-0 suture or filled with a hyaluronan/collagen composite matrix without cells, with platelet rich plasma or with autologous mesenchymal stem cells. Matrices with stem cells were in part precultured in chondrogenic medium for 14 days prior to the implantation. Menisci were harvested at 6 and 12 weeks. The developed repair tissue was analyzed macroscopically, histologically and biomechanically. Untreated defects, defects treated with suture alone, with cell-free or with platelet rich plasma seeded implants showed a muted fibrous healing response. The implantation of stem cell-matrix constructs initiated fibrocartilage-like repair tissue, with better integration and biomechanical properties in the precultured stem cell-matrix group. A hyaluronan-collagen based composite scaffold seeded with mesenchymal stem cells is more effective in the repair avascular meniscal tear with stable meniscus-like tissue and to restore the native meniscus.}, subject = {Meniskusschaden}, language = {en} }