@article{EbigboMendelRueckertetal., author = {Ebigbo, Alanna and Mendel, Robert and R{\"u}ckert, Tobias and Schuster, Laurin and Probst, Andreas and Manzeneder, Johannes and Prinz, Friederike and Mende, Matthias and Steinbr{\"u}ck, Ingo and Faiss, Siegbert and Rauber, David and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Deprez, Pierre and Oyama, Tsuneo and Takahashi, Akiko and Seewald, Stefan and Sharma, Prateek and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut}, title = {Endoscopic prediction of submucosal invasion in Barrett's cancer with the use of Artificial Intelligence: A pilot Study}, series = {Endoscopy}, volume = {53}, journal = {Endoscopy}, number = {09}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/a-1311-8570}, pages = {878 -- 883}, abstract = {Background and aims: The accurate differentiation between T1a and T1b Barrett's cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett's cancer white-light images. Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett's cancer. Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively. Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett's cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI.}, subject = {Maschinelles Lernen}, language = {en} } @article{EbigboMendelScheppachetal., author = {Ebigbo, Alanna and Mendel, Robert and Scheppach, Markus W. and Probst, Andreas and Shahidi, Neal and Prinz, Friederike and Fleischmann, Carola and R{\"o}mmele, Christoph and G{\"o}lder, Stefan Karl and Braun, Georg and Rauber, David and R{\"u}ckert, Tobias and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut}, title = {Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm}, series = {Gut}, volume = {71}, journal = {Gut}, number = {12}, publisher = {BMJ}, address = {London}, doi = {10.1136/gutjnl-2021-326470}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-54293}, pages = {2388 -- 2390}, abstract = {In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63\% and 76\%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85\% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training.}, language = {en} } @misc{EbigboRauberAyoubetal., author = {Ebigbo, Alanna and Rauber, David and Ayoub, Mousa and Birzle, Lisa and Matsumura, Tomoaki and Probst, Andreas and Steinbr{\"u}ck, Ingo and Nagl, Sandra and R{\"o}mmele, Christoph and Meinikheim, Michael and Scheppach, Markus W. and Palm, Christoph and Messmann, Helmut}, title = {Early Esophageal Cancer and the Generalizability of Artificial Intelligence}, series = {Endoscopy}, volume = {56}, journal = {Endoscopy}, number = {S 02}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0044-1783775}, pages = {S428}, abstract = {Aims Artificial Intelligence (AI) systems in gastrointestinal endoscopy are narrow because they are trained to solve only one specific task. Unlike Narrow-AI, general AI systems may be able to solve multiple and unrelated tasks. We aimed to understand whether an AI system trained to detect, characterize, and segment early Barrett's neoplasia (Barrett's AI) is only capable of detecting this pathology or can also detect and segment other diseases like early squamous cell cancer (SCC). Methods 120 white light (WL) and narrow-band endoscopic images (NBI) from 60 patients (1 WL and 1 NBI image per patient) were extracted from the endoscopic database of the University Hospital Augsburg. Images were annotated by three expert endoscopists with extensive experience in the diagnosis and endoscopic resection of early esophageal neoplasias. An AI system based on DeepLabV3+architecture dedicated to early Barrett's neoplasia was tested on these images. The AI system was neither trained with SCC images nor had it seen the test images prior to evaluation. The overlap between the three expert annotations („expert-agreement") was the ground truth for evaluating AI performance. Results Barrett's AI detected early SCC with a mean intersection over reference (IoR) of 92\% when at least 1 pixel of the AI prediction overlapped with the expert-agreement. When the threshold was increased to 5\%, 10\%, and 20\% overlap with the expert-agreement, the IoR was 88\%, 85\% and 82\%, respectively. The mean Intersection Over Union (IoU) - a metric according to segmentation quality between the AI prediction and the expert-agreement - was 0.45. The mean expert IoU as a measure of agreement between the three experts was 0.60. Conclusions In the context of this pilot study, the predictions of SCC by a Barrett's dedicated AI showed some overlap to the expert-agreement. Therefore, features learned from Barrett's cancer-related training might be helpful also for SCC prediction. Our results allow different possible explanations. On the one hand, some Barrett's cancer features generalize toward the related task of assessing early SCC. On the other hand, the Barrett's AI is less specific to Barrett's cancer than a general predictor of pathological tissue. However, we expect to enhance the detection quality significantly by extending the training to SCC-specific data. The insight of this study opens the way towards a transfer learning approach for more efficient training of AI to solve tasks in other domains.}, language = {en} } @inproceedings{GutbrodGeislerRauberetal., author = {Gutbrod, Max and Geisler, Benedikt and Rauber, David and Palm, Christoph}, title = {Data Augmentation for Images of Chronic Foot Wounds}, series = {Bildverarbeitung f{\"u}r die Medizin 2024: Proceedings, German Workshop on Medical Image Computing, March 10-12, 2024, Erlangen}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2024: Proceedings, German Workshop on Medical Image Computing, March 10-12, 2024, Erlangen}, editor = {Maier, Andreas and Deserno, Thomas M. and Handels, Heinz and Maier-Hein, Klaus and Palm, Christoph and Tolxdorff, Thomas}, publisher = {Springer}, address = {Wiesbaden}, doi = {10.1007/978-3-658-44037-4_71}, pages = {261 -- 266}, abstract = {Training data for Neural Networks is often scarce in the medical domain, which often results in models that struggle to generalize and consequently showpoor performance on unseen datasets. Generally, adding augmentation methods to the training pipeline considerably enhances a model's performance. Using the dataset of the Foot Ulcer Segmentation Challenge, we analyze two additional augmentation methods in the domain of chronic foot wounds - local warping of wound edges along with projection and blurring of shapes inside wounds. Our experiments show that improvements in the Dice similarity coefficient and Normalized Surface Distance metrics depend on a sensible selection of those augmentation methods.}, language = {en} } @article{MeinikheimMendelPalmetal., author = {Meinikheim, Michael and Mendel, Robert and Palm, Christoph and Probst, Andreas and Muzalyova, Anna and Scheppach, Markus W. and Nagl, Sandra and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Schulz, Dominik A. H. and Schlottmann, Jakob and Prinz, Friederike and Rauber, David and Rueckert, Tobias and Matsumura, Tomoaki and Fern{\´a}ndez-Esparrach, Gl{\`o}ria and Parsa, Nasim and Byrne, Michael F. and Messmann, Helmut and Ebigbo, Alanna}, title = {Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett's esophagus: a tandem randomized and video trial}, series = {Endoscopy}, journal = {Endoscopy}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/a-2296-5696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-72818}, pages = {9}, abstract = {Background This study evaluated the effect of an artificial intelligence (AI)-based clinical decision support system on the performance and diagnostic confidence of endoscopists in their assessment of Barrett's esophagus (BE). Methods 96 standardized endoscopy videos were assessed by 22 endoscopists with varying degrees of BE experience from 12 centers. Assessment was randomized into two video sets: group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. Results AI had a stand-alone sensitivity, specificity, and accuracy of 92.2\%, 68.9\%, and 81.3\%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3\%, 58.1\%, and 71.5\%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.8\% [95\%CI 65.2\%-74.2\%] to 78.0\% [95\%CI 74.0\%-82.0\%]; specificity 67.3\% [95\%CI 62.5\%-72.2\%] to 72.7\% [95\%CI 68.2\%-77.3\%]). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. Conclusion BE nonexperts benefitted significantly from additional AI. BE experts and nonexperts remained significantly below the stand-alone performance of AI, suggesting that there may be other factors influencing endoscopists' decisions to follow or discard AI advice.}, language = {en} } @inproceedings{MendelRauberPalm, author = {Mendel, Robert and Rauber, David and Palm, Christoph}, title = {Exploring the Effects of Contrastive Learning on Homogeneous Medical Image Data}, series = {Bildverarbeitung f{\"u}r die Medizin 2023: Proceedings, German Workshop on Medical Image Computing, July 2- 4, 2023, Braunschweig}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2023: Proceedings, German Workshop on Medical Image Computing, July 2- 4, 2023, Braunschweig}, publisher = {Springer Vieweg}, address = {Wiesbaden}, doi = {10.1007/978-3-658-41657-7}, pages = {128 -- 13}, abstract = {We investigate contrastive learning in a multi-task learning setting classifying and segmenting early Barrett's cancer. How can contrastive learning be applied in a domain with few classes and low inter-class and inter-sample variance, potentially enabling image retrieval or image attribution? We introduce a data sampling strategy that mines per-lesion data for positive samples and keeps a queue of the recent projections as negative samples. We propose a masking strategy for the NT-Xent loss that keeps the negative set pure and removes samples from the same lesion. We show cohesion and uniqueness improvements of the proposed method in feature space. The introduction of the auxiliary objective does not affect the performance but adds the ability to indicate similarity between lesions. Therefore, the approach could enable downstream auto-documentation tasks on homogeneous medical image data.}, language = {en} } @article{MendelRauberSouzaJretal., author = {Mendel, Robert and Rauber, David and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Palm, Christoph}, title = {Error-Correcting Mean-Teacher: Corrections instead of consistency-targets applied to semi-supervised medical image segmentation}, series = {Computers in Biology and Medicine}, volume = {154}, journal = {Computers in Biology and Medicine}, number = {March}, publisher = {Elsevier}, issn = {0010-4825}, doi = {10.1016/j.compbiomed.2023.106585}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-57790}, pages = {13}, abstract = {Semantic segmentation is an essential task in medical imaging research. Many powerful deep-learning-based approaches can be employed for this problem, but they are dependent on the availability of an expansive labeled dataset. In this work, we augment such supervised segmentation models to be suitable for learning from unlabeled data. Our semi-supervised approach, termed Error-Correcting Mean-Teacher, uses an exponential moving average model like the original Mean Teacher but introduces our new paradigm of error correction. The original segmentation network is augmented to handle this secondary correction task. Both tasks build upon the core feature extraction layers of the model. For the correction task, features detected in the input image are fused with features detected in the predicted segmentation and further processed with task-specific decoder layers. The combination of image and segmentation features allows the model to correct present mistakes in the given input pair. The correction task is trained jointly on the labeled data. On unlabeled data, the exponential moving average of the original network corrects the student's prediction. The combined outputs of the students' prediction with the teachers' correction form the basis for the semi-supervised update. We evaluate our method with the 2017 and 2018 Robotic Scene Segmentation data, the ISIC 2017 and the BraTS 2020 Challenges, a proprietary Endoscopic Submucosal Dissection dataset, Cityscapes, and Pascal VOC 2012. Additionally, we analyze the impact of the individual components and examine the behavior when the amount of labeled data varies, with experiments performed on two distinct segmentation architectures. Our method shows improvements in terms of the mean Intersection over Union over the supervised baseline and competing methods. Code is available at https://github.com/CloneRob/ECMT.}, language = {en} } @inproceedings{RauberMendelScheppachetal., author = {Rauber, David and Mendel, Robert and Scheppach, Markus W. and Ebigbo, Alanna and Messmann, Helmut and Palm, Christoph}, title = {Analysis of Celiac Disease with Multimodal Deep Learning}, series = {Bildverarbeitung f{\"u}r die Medizin 2022: Proceedings, German Workshop on Medical Image Computing, Heidelberg, June 26-28, 2022}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2022: Proceedings, German Workshop on Medical Image Computing, Heidelberg, June 26-28, 2022}, publisher = {Springer Vieweg}, address = {Wiesbaden}, doi = {10.1007/978-3-658-36932-3_25}, pages = {115 -- 120}, abstract = {Celiac disease is an autoimmune disorder caused by gluten that results in an inflammatory response of the small intestine.We investigated whether celiac disease can be detected using endoscopic images through a deep learning approach. The results show that additional clinical parameters can improve the classification accuracy. In this work, we distinguished between healthy tissue and Marsh III, according to the Marsh score system. We first trained a baseline network to classify endoscopic images of the small bowel into these two classes and then augmented the approach with a multimodality component that took the antibody status into account.}, language = {en} } @article{RoemmeleMendelBarrettetal., author = {R{\"o}mmele, Christoph and Mendel, Robert and Barrett, Caroline and Kiesl, Hans and Rauber, David and R{\"u}ckert, Tobias and Kraus, Lisa and Heinkele, Jakob and Dhillon, Christine and Grosser, Bianca and Prinz, Friederike and Wanzl, Julia and Fleischmann, Carola and Nagl, Sandra and Schnoy, Elisabeth and Schlottmann, Jakob and Dellon, Evan S. and Messmann, Helmut and Palm, Christoph and Ebigbo, Alanna}, title = {An artificial intelligence algorithm is highly accurate for detecting endoscopic features of eosinophilic esophagitis}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, publisher = {Nature Portfolio}, address = {London}, doi = {10.1038/s41598-022-14605-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-46928}, pages = {10}, abstract = {The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoEEREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level.}, language = {en} } @misc{RoemmeleMendelRauberetal., author = {R{\"o}mmele, Christoph and Mendel, Robert and Rauber, David and R{\"u}ckert, Tobias and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Endoscopic Diagnosis of Eosinophilic Esophagitis Using a deep Learning Algorithm}, series = {Endoscopy}, volume = {53}, journal = {Endoscopy}, number = {S 01}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/s-0041-1724274}, abstract = {Aims Eosinophilic esophagitis (EoE) is easily missed during endoscopy, either because physicians are not familiar with its endoscopic features or the morphologic changes are too subtle. In this preliminary paper, we present the first attempt to detect EoE in endoscopic white light (WL) images using a deep learning network (EoE-AI). Methods 401 WL images of eosinophilic esophagitis and 871 WL images of normal esophageal mucosa were evaluated. All images were assessed for the Endoscopic Reference score (EREFS) (edema, rings, exudates, furrows, strictures). Images with strictures were excluded. EoE was defined as the presence of at least 15 eosinophils per high power field on biopsy. A convolutional neural network based on the ResNet architecture with several five-fold cross-validation runs was used. Adding auxiliary EREFS-classification branches to the neural network allowed the inclusion of the scores as optimization criteria during training. EoE-AI was evaluated for sensitivity, specificity, and F1-score. In addition, two human endoscopists evaluated the images. Results EoE-AI showed a mean sensitivity, specificity, and F1 of 0.759, 0.976, and 0.834 respectively, averaged over the five distinct cross-validation runs. With the EREFS-augmented architecture, a mean sensitivity, specificity, and F1-score of 0.848, 0.945, and 0.861 could be demonstrated respectively. In comparison, the two human endoscopists had an average sensitivity, specificity, and F1-score of 0.718, 0.958, and 0.793. Conclusions To the best of our knowledge, this is the first application of deep learning to endoscopic images of EoE which were also assessed after augmentation with the EREFS-score. The next step is the evaluation of EoE-AI using an external dataset. We then plan to assess the EoE-AI tool on endoscopic videos, and also in real-time. This preliminary work is encouraging regarding the ability for AI to enhance physician detection of EoE, and potentially to do a true "optical biopsy" but more work is needed.}, language = {en} }