@inproceedings{DendorferCarbesRasmussen, author = {Dendorfer, Sebastian and Carbes, S. and Rasmussen, John}, title = {The influence of muscle forces on biomechanical fracture fixation simulations - from in-vivo forces to tissue strains}, series = {World Congress on Medical Physics and Biomedical Engineering, 7 - 12, 2009, Munich}, booktitle = {World Congress on Medical Physics and Biomedical Engineering, 7 - 12, 2009, Munich}, language = {en} } @inproceedings{DendorferEnglert, author = {Dendorfer, Sebastian and Englert, Carsten}, title = {Forces on a clavicles midshaft fracture and influence of fracture type}, series = {AO Symposium, Regensburg, 2009}, booktitle = {AO Symposium, Regensburg, 2009}, language = {en} } @inproceedings{DendorferFeldottoWalchetal., author = {Dendorfer, Sebastian and Feldotto, Benedikt and Walch, Blasius and Koch, Patrick and Knoll, Alois}, title = {Co-Development of an Infant Prototype in Hardware and Simulation based on CT Imaging Data}, series = {IEEE International Conference on Cyborg and Bionic Systems (CBS), 2019, Munich}, booktitle = {IEEE International Conference on Cyborg and Bionic Systems (CBS), 2019, Munich}, pages = {6}, abstract = {The development of biomimetic robots has gained research interest in the last years as it may both help under-standing processes of motion execution in biological systems as well as developping a novel generation of intelligent and energy efficient robots. However, exact model generation that builds up on observations and robot design is very time intensive. In this paper we present a novel pipeline for co-development of biomimetic hardware and simulation models based on biological Computer Tomography (CT) data. For this purpose we exploit State of the Art rapid prototyping technologies such as 3D Printing and the Neurorobotics Platform for musculoskeletal simulations in virtual environments. The co-development integrates both advantages of virtual and physical experimental models and is expected to increase development speed of controllers that can be tested on the simulated counterpart before application to a printed robot model. We demonstrate the pipeline by generating a one year old infant model as a musculoskeletal simulation model and a print-in-place 3D printed skeleton as a single movable part. Even though we hereonly introduce the initial body generation and only a first testsetup for a modular sensory and control framework, we can clearly spot advantages in terms of rapid model generation and highly biological related models. Engineering costs are reducedand models can be provided to a wide research community for controller testing in an early development phase.}, subject = {Biomechanische Analyse}, language = {en} } @article{DendorferGschossman, author = {Dendorfer, Sebastian and Gschoßman, Lukas}, title = {Hightech in der Rehabiliation}, series = {BVOU Infobrief: Hightech in Orthop{\"a}die und Unfallchirurgie}, journal = {BVOU Infobrief: Hightech in Orthop{\"a}die und Unfallchirurgie}, number = {1}, publisher = {BVOU - Berufsverband f{\"u}r Orthop{\"a}die und Unfallchirurgie e.V.}, address = {Berlin}, issn = {2747-5913}, pages = {9 -- 11}, abstract = {Aufgrund der steigenden Lebenserwartung und dem damit einhergehenden demographischen Wandel wird der Bedarf an Rehabilitations-Behandlungen in absehbarer Zukunft stark ansteigen. Ein Beispiel f{\"u}r diesen Trend ist die physiotherapeutische Behandlung nach Erhalt einer Knie-Totalendoprothese (Knie-TEP). So gehen Modellrechnungen basierend auf dem Bev{\"o}lkerungswachstum und der bisherigen Pr{\"a}valenz von Knie-TEPs davon aus, dass die Anzahl an durchgef{\"u}hrten Eingriffen in einkommensstarken L{\"a}ndern wie Deutschland weiter zunehmen wird. Weiterhin stoßen traditionelle Rehabilitationsverfahren, gerade in strukturschwachen Regionen, schon heute an ihre Grenzen. Deutlich zu sehen war das w{\"a}hrend den Hochphasen der aktuellen Covid-19-Pandemie, als der Kontakt zwischen Therapeut*in und Patient*in fl{\"a}chendeckend eingeschr{\"a}nkt war. Eine erh{\"o}hte Nachfrage nach neuartigen Reha-Angeboten ist die logische Konsequenz. Innovative Konzepte sind daher dringend notwendig, um die daraus resultierenden technischen, sozialen und {\"o}konomischen Herausforderungen zu bew{\"a}ltigen.}, language = {de} } @article{DendorferHammerLenich, author = {Dendorfer, Sebastian and Hammer, Joachim and Lenich, Andreas}, title = {Characterisation and testing of biomaterials}, series = {Technology and Health Care}, volume = {19}, journal = {Technology and Health Care}, number = {5}, doi = {10.3233/THC-2011-0644}, pages = {357 -- 371}, subject = {Biomaterial}, language = {en} } @incollection{DendorferHammerLenich, author = {Dendorfer, Sebastian and Hammer, Joachim and Lenich, Andreas}, title = {Characterisation and testing of biomaterials}, series = {Basic Engineering for Medics and Biologists: An ESEM Primer}, booktitle = {Basic Engineering for Medics and Biologists: An ESEM Primer}, number = {Chapter IV.4.}, editor = {Lee, T. Clive and Niederer, Peter F.}, publisher = {Non Basic Stock Line}, isbn = {978-1607505266}, subject = {Biomaterial}, language = {en} } @inproceedings{DendorferKubowitsch, author = {Dendorfer, Sebastian and Kubowitsch, Simone}, title = {The interaction of mental stress and biomechanics}, series = {Health Technology Triangle, Weiden, 2016}, booktitle = {Health Technology Triangle, Weiden, 2016}, language = {en} } @inproceedings{DendorferKubowitschSuess, author = {Dendorfer, Sebastian and Kubowitsch, Simone and S{\"u}ß, Franz}, title = {How to determine the effect of working conditions on the human body}, series = {11th International Scientific Conference on Production Engineering DEVELOPMENT AND MODERNIZATION OF PRODUCTION (RIM 2017), Sarajevo, Bosnia and Herzegovina}, booktitle = {11th International Scientific Conference on Production Engineering DEVELOPMENT AND MODERNIZATION OF PRODUCTION (RIM 2017), Sarajevo, Bosnia and Herzegovina}, abstract = {Work places and conditions strains the human body, both psychologically and biomechanically. In order to analyse working conditions and in the following to improve them, detailed knowledge about the effect of the different stressors on the body is needed. This manuscript discusses methods on how to evaluate biomechanical and mental loading and its effect on the musculoskeletal system. A possible workflow for the analysis is presented.}, subject = {Arbeitsbedingungen}, language = {en} } @article{DendorferMaierHammer, author = {Dendorfer, Sebastian and Maier, Hans J{\"u}rgen and Hammer, Josef}, title = {Fatigue damage in cancellous bone: an experimental approach from continuum to micro scale}, series = {Journal of the Mechanical Behavior of Biomedical Materials}, volume = {2}, journal = {Journal of the Mechanical Behavior of Biomedical Materials}, number = {1}, doi = {10.1016/j.jmbbm.2008.03.003}, pages = {113 -- 119}, abstract = {Repeated loadings may cause fatigue fractures in bony structures. Even if these failure types are known, data for trabecular bone exposed to cyclic loading are still insufficient as the majority of fatigue analyses on bone concentrate on cortical structures. Despite its highly anisotropic and inhomogeneous structure, trabecular bone is treated with continuum approaches in fatigue analyses. The underlying deformation and damage mechanism within trabecular specimens are not yet sufficiently investigated. In the present study different types of trabecular bone were loaded in monotonic and cyclic compression. In addition to the measurement of integral specimen deformations, optical deformation analysis was employed in order to obtain strain distributions at different scale levels, from the specimens' surface to the trabeculae level. These measurements allowed for the possibility of linking the macroscopic and microscopic mechanical behaviour of cancellous bone. Deformations were found to be highly inhomogeneous across the specimen. Furthermore strains were found to already localise at very low load levels and after few load cycles. Microcracks in individual trabeculae were induced in the very early stage of cyclic testing. The results provide evidence of the capability of the method to supply essential data on the failure behaviour of individual trabeculae in future studies.}, subject = {Knochen}, language = {en} } @incollection{DendorferMaierHammer, author = {Dendorfer, Sebastian and Maier, Hans J{\"u}rgen and Hammer, Josef}, title = {How do age and anisotropy affect the fatigue behaviour of cancellous bone?}, series = {Medicine Meets Engineering}, booktitle = {Medicine Meets Engineering}, publisher = {IOS Press}, pages = {68 -- 74}, abstract = {The fatigue behaviour of materials is of particular interest for the failure prediction of materials and structures exposed to cyclic loading. For trabecular bone structures only a few sets of lifetime data have been reported in the literature and structural measures are commonly not considered. The influence of load contributions not aligned with the main physiological axis remains unclear. Furthermore age effects on the fatigue behaviour are not well described. In the present study, different groups of human vertebral cancellous bone were exposed to cyclic compression. The inital modulus and therefore lifetimes were found to be highly dependent on age. The decrease in both with increasing age was much more pronounced in specimens which were not aligned with the main physiological axis. This implies that old bone is much more sensitive to (cyclic) failure loads in general but particularly to loads which are not coincident with the physiological main axis.}, subject = {Knochenbruch}, language = {en} } @article{DendorferMaierTayloretal., author = {Dendorfer, Sebastian and Maier, Hans J{\"u}rgen and Taylor, David and Hammer, Joachim}, title = {Anisotropy of the fatigue behaviour of cancellous bone}, series = {Journal of Biomechanics}, volume = {41}, journal = {Journal of Biomechanics}, number = {3}, doi = {10.1016/j.jbiomech.2007.09.037}, pages = {636 -- 641}, abstract = {The fatigue behaviour of materials is of particular interest for the failure prediction of materials and structures exposed to cyclic loading. For trabecular bone structures only a few sets of lifetime data have been reported in the literature and structural measures are commonly not considered. The influence of load contributions which are not aligned with the main physiological axis remains unclear. Furthermore site and species dependent relationships are not well described. In this study five different groups of trabecular bone, defined in terms of orientation, species and site were exposed to cyclic compression. In total, 108 fatigue tests were analysed. The lifetimes were found to decrease drastically when off-axis loads were applied. Additionally, species and site strongly affect fatigue lifetimes. Strains at failure were also found to be a function of orientation.}, subject = {Erm{\"u}dung}, language = {en} } @article{DendorferMelzner, author = {Dendorfer, Sebastian and Melzner, Maximilian}, title = {R{\"u}ckenschmerzen bei Geburtshelfer:innen. Die Haltung macht's.}, series = {Deutsche Hebammen-Zeitschrift}, volume = {74}, journal = {Deutsche Hebammen-Zeitschrift}, number = {11}, publisher = {Staude}, address = {Hannover}, issn = {0012-026X}, pages = {60 -- 62}, abstract = {F{\"u}r Mutter und Kind konnte das Risiko der Geburt durch die Weiterentwicklung der Medizin drastisch reduziert werden. Doch wie ist es um das Wohl derer bestellt, die die Geb{\"a}rende unterst{\"u}tzen? Eine Studie der Ostbayerischen Technischen Hochschule Regensburg hat sich mit den muskuloskelettalen Beschwerden von Geburtshelfer:innen auseinandergesetzt}, language = {de} } @inproceedings{DendorferPenzkofer, author = {Dendorfer, Sebastian and Penzkofer, Rainer}, title = {Experimentelle Untersuchung der Belastungen im Kopf beim Treten}, series = {Fachsymposium "Treten gegen den Kopf", April 2013, N{\"u}rnberg}, booktitle = {Fachsymposium "Treten gegen den Kopf", April 2013, N{\"u}rnberg}, language = {de} } @inproceedings{DendorferRasmussen, author = {Dendorfer, Sebastian and Rasmussen, John}, title = {The influence of in-vivo muscle forces on the stress distribution in a vertebral body during activities of daily living}, series = {Eurospine Warsaw, Poland 2009}, booktitle = {Eurospine Warsaw, Poland 2009}, language = {en} } @inproceedings{DendorferRasmussenChristensenetal., author = {Dendorfer, Sebastian and Rasmussen, John and Christensen, Soeren Toerholm and Robie, Bruce}, title = {The Effect of Spinal Disc Herniation on Multifidus Muscles}, series = {56th Orthopaedic Research Society Meeting, New Orleans, USA, 2010}, booktitle = {56th Orthopaedic Research Society Meeting, New Orleans, USA, 2010}, language = {en} } @article{DendorferWeberKennedy, author = {Dendorfer, Sebastian and Weber, Tim and Kennedy, O.}, title = {Musculoskeletal modeling for hip replacement outcome analyses and other applications}, series = {The Journal of the American Academy of Orthopaedic Surgeons}, volume = {22}, journal = {The Journal of the American Academy of Orthopaedic Surgeons}, number = {4}, doi = {10.5435/JAAOS-22-04-268}, pages = {268 -- 269}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @misc{EgerBergstraesserDendorferetal., author = {Eger, Maximilian and Bergstraesser, Marcel and Dendorfer, Sebastian and Lenich, Andreas and Pfeifer, Christian}, title = {Influence of radial head prosthetic design on humeroradial stability: Validation of a test rig therefore}, series = {DOKU2022, Deutscher Kongress f{\"u}r Orthop{\"a}die und Unfallchirurgie, 25.-28. 10.2022, Berlin}, journal = {DOKU2022, Deutscher Kongress f{\"u}r Orthop{\"a}die und Unfallchirurgie, 25.-28. 10.2022, Berlin}, publisher = {German Medical Science GMS Publishing House}, address = {D{\"u}sseldorf}, doi = {10.3205/22dkou611}, url = {http://nbn-resolving.de/urn:nbn:de:0183-22dkou6115}, language = {en} } @article{EigenbergerFelthausSchratzenstalleretal., author = {Eigenberger, Andreas and Felthaus, Oliver and Schratzenstaller, Thomas and Haerteis, Silke and Utpatel, Kirsten and Prantl, Lukas}, title = {The Effects of Shear Force-Based Processing of Lipoaspirates on White Adipose Tissue and the Differentiation Potential of Adipose Derived Stem Cells}, series = {cells}, volume = {11}, journal = {cells}, number = {16}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/cells11162543}, pages = {13}, abstract = {Autologous lipotransfer is a promising method for tissue regeneration, because white adipose tissue contains a heterogeneous cell population, including mesenchymal stem cells, endothelial cells, immune cells, and adipocytes. In order to improve the outcome, adipose tissue can be processed before application. In this study, we investigated changes caused by mechanical processing. Lipoaspirates were processed using sedimentation, first-time centrifugation, shear-force homogenization, and second-time centrifugation. The average adipocyte size, stromal vascular cell count, and adipocyte depot size were examined histologically at every processing step. In addition, the adipose derived stem cells (ADSCs) were isolated and differentiated osteogenically and adipogenically. While homogenization causes a disruption of adipocyte depots, the shape of the remaining adipocytes is not changed. On average, these adipocytes are smaller than the depot adipocytes, they are surrounded by the ECM, and therefore mechanically more stable. The volume loss of adipocyte depots leads to a significant enrichment of stromal vascular cells such as ADSCs. However, the mechanical processing does not change the potential of the ADSCs to differentiate adipogenically or steogenically. It thus appears that mechanically processed lipoaspirates are promising for the reparation of even mechanically stressed tissue as that found in nasolabial folds. The changes resulting from the processing correspond more to a filtration of mechanically less stable components than to a manipulation of the tissue.}, language = {en} } @misc{EngelhardtMelznerHavelkovaetal., author = {Engelhardt, Lucas and Melzner, Maximilian and Havelkova, Linda and Fiala, Pavel and Rybarova, Martina and Christen, Patrik and Dendorfer, Sebastian and Simon, Ulrich}, title = {A new musculoskeletal AnyBody detailed hand model}, series = {European Society of Biomechanics meeting 2019, Vienna, Austria}, journal = {European Society of Biomechanics meeting 2019, Vienna, Austria}, abstract = {The AnyBody™ Modeling System (AMS) [1], is an universally used musculoskeletal simulation software using inverse dynamics. Until now, no complete human hand model is known in the AMS. Also considering other musculoskeletal software platforms, just one detailed entire hand model is recently published [2] but is only based on one subject. The aim of this work is to implement a full detailed hand model for the AMS including all extrinsic and intrinsic muscles using data by the UWB gained through an anatomical study of ten cadaver hands.}, language = {en} } @article{EnglertAngeleFierlbecketal., author = {Englert, Carsten and Angele, Peter and Fierlbeck, J. and Dendorfer, Sebastian and Schubert, T. and M{\"u}ller, R. and Lienhard, S. and Zellner, J. and Nerlich, Michael and Neumann, Carsten}, title = {Conductive bone substitute material with variable antibiotic delivery}, series = {Der Unfallchirurg}, volume = {110}, journal = {Der Unfallchirurg}, number = {5}, publisher = {Springer}, doi = {10.1007/s00113-007-1229-3}, pages = {408 -- 413}, abstract = {A new bone substitute, consisting of hydroxylapatite and calcium sulphate, was prepared in two formulations and analysed for its mechanical strength and antibiotic elution.The bone substitute PerOssal has osteoconductive and degradable properties. The material has a built-in capillary structure, which results in an immediate fluid uptake. Antibiotics absorbed to the bone substitute resulted in a prolonged release rate. Mechanical strength was investigated by an unconfined compression test up to failure under both wet and dry conditions for both formulations of the bone substitute. Antibiotic release was analysed microbiologically for two antibiotics, vancomycin and gentamicin, over an elution period of 10 days using the agar diffusion method.The drug release analysis resulted in a prolonged release rate of both antibiotics over 10 days. In vitro the amount of gentamicin and vancomycin eluted at day 10. From one pellet still exceeded the minimal inhibitory concentration of most aetiologically important pathogens. Formulation two of the present bone substitute is significantly harder in both wet and dry conditions when compared to formulation one. Both formulations lose strength in the wet condition relative to their performance in the dry condition. However, formulation two is as hard under wet conditions as formulation one is when dry.PerOssal is a suitable new degradable osteoconductive bone substitute that can be loaded with antibiotic solutions, which are released in effective doses over 10 days. The mechanical strength of PerOssal is sufficient to support cancellous bone defects in non-weight-bearing areas or in combination with osteosynthesis.}, subject = {Knochenersatz}, language = {en} } @misc{EnglertDendorfer, author = {Englert, Carsten and Dendorfer, Sebastian}, title = {Einfluss der Rotatorenmanschette auf die glenohumerale Stabilit{\"a}t}, series = {20. Intensivkurs Schulterendoprothetik Marburg}, journal = {20. Intensivkurs Schulterendoprothetik Marburg}, address = {Marburg}, language = {de} } @inproceedings{EnglertMuellerDendorfer, author = {Englert, Carsten and M{\"u}ller, F. and Dendorfer, Sebastian}, title = {Einfluss der Muskelkr{\"a}fte, des Bewegungsausmaßes und der Bruchform auf die Kraft{\"u}bertragung des Implantat-Knochenverbundes am Beispiel der Claviculafraktur im mittleren Drittel}, series = {17. Jahreskongress der Deutschen Vereinigung f{\"u}r Schulter- und Ellenbogenchirurgie (DVSE), Rosenheim 2010}, booktitle = {17. Jahreskongress der Deutschen Vereinigung f{\"u}r Schulter- und Ellenbogenchirurgie (DVSE), Rosenheim 2010}, abstract = {Fragestellung Es soll in dieser Computersimulationsstudie untersucht werden, wie der Osteosyntheseverbund Platte mit Schrauben im Verbund mit einer im mittleren Drittel gebrochenen Clavicula durch das Bewegungsausmaß in vivo belastet ist. Was sind die grundlegenden Kr{\"a}fte die auf Clavicula und Implantat wirken und welchen Einfl uss hat die Bruchform. Methodik Die Muskel- und Gelenkkr{\"a}fte sowie die Belastung des Implantatverbundes wurden mit einer muskuloskelletalen Simulationssoftware (AnyBody Technology, V.4) berechnet. Hierf{\"u}r wurden mit einem komplexen Model des menschlichen K{\"o}rpers folgende Bewegungen analysiert: eine Flexion von 160° und Abduktion 160° mit einem Gewicht von 2 kg in der Hand. Aus CT-Patientendaten wurden zwei dreidimensionale Modelle des Clavicula-Implantat Verbundes gebildet, die sich in der Frakturform unterscheiden (Querfraktur und vertikale Fraktur). In beiden Modellen wurde eine Claviculaosteosynthese in superiorer Position mit einer 6 Loch LCP mit 2 Schrauben pro Hauptfragment verwendet. Die Materialeigenschaften wurden aus der Dichte des Materials sowie aus Literaturdaten verwendet. Die Muskel- und Gelenkkr{\"a}fte aus der muskuloskelletalen Berechnung wurden auf das Finite Elemente Modell {\"u}bertragen und die Spannungen und Dehnungen des Implantat-Knochenverbundes wurden berechnet. Ergebnisse Es zeigte sich, dass die simulierte in vivo Belastung stark abh{\"a}ngig vom Flexionswinkel ist. Das Implantat ist in der superioren Lage auf Biegung belastet, welche maximale Werte im {\"U}berschulterniveau erreicht. Die Bruchform mit anatomischer Reposition und Kontakt der Hauptfragmente zueinander f{\"u}hrt zu einer deutlichen Entlastung des Osteosyntheseverbundes im Vergleich zu einer Bruchform mit vertikaler Fraktur. Schlussfolgerung Aus den Analysen ist eine Positionierung der Plattenosteosynthese f{\"u}r die im mittleren Drittel frakturierte Clavicula in anterior-superiorer Lage w{\"u}nschenswert. Die anatomische Reposition entlastet den Osteosyntheseverbund und sollte m{\"o}glichst erreicht werden. Die Nachbehandlung sollte ein Bewegungsausmaß f{\"u}r den Arm f{\"u}r 4 Wochen f{\"u}r einfache Bruchformen auf 70° Flexion und Abduktion limitieren und f{\"u}r komplexe Bruchformen diese Limitierung ausgedehnt werden.}, language = {de} } @inproceedings{Fuhrmann, author = {Fuhrmann, Thomas}, title = {Semi-Structured Lab Projects in Communication Engineering Education}, series = {2023 IEEE Global Engineering Education Conference (EDUCON), 01-04 May 2023, Kuwait}, booktitle = {2023 IEEE Global Engineering Education Conference (EDUCON), 01-04 May 2023, Kuwait}, publisher = {IEEE}, doi = {10.1109/EDUCON54358.2023.10125244}, pages = {1 -- 5}, abstract = {It is generally known that project-based learning is a very important part of engineering education to connect theoretical knowledge with practical work. Students learn to apply their knowledge to real-world challenges as it is the case in their later professional life. If students are not used to project work or the scientific topic is new and relatively complex, they may be overwhelmed. The consequence is that students achieve poor results, are frustrated, and therefore learning success is low. Semi-structured projects are introduced that combine the advantages of structured experiments with projects. The project work is structured into several parts with detailed descriptions of the tasks. In the end, students get similar results to doing a free project, but the success rate is higher due to higher guidance. Therefore, these semi-structured projects are seen to be an appropriate method to guide students to learn how to do project work. The feedback from most students is very positive. Some students with no previous lab experience complained about the project work and wished for more guidance to become familiar with lab work. In sum, the student feedback is encouraging to develop semi-structured projects further.}, language = {en} } @unpublished{FoerstlAdlerSuessetal., author = {F{\"o}rstl, Nikolas and Adler, Ina and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Technologies for Evaluation of Pelvic Floor Functionality: A Systematic Review}, publisher = {Center for Open Science}, doi = {10.31219/osf.io/dcqyg}, abstract = {Pelvic floor dysfunction is a common problem in women and has a negative impact ontheir quality of life. The aim of this review was to provide a general overview of the current state oftechnology used to assess pelvic floor functionality. It also provides literature research of the phys-iological and anatomical factors that correlate with pelvic floor health. The systematic review wasconducted according to the PRISMA guidelines. PubMed, ScienceDirect, Cochrane Library andIEEE databases were searched for publications on sensor technology for the assessment of pelvicfloor functionality. Anatomical and physiological parameters were identified through a manualsearch. In the systematic review 115 publications were included. 12 different sensor technologieswere identified. Information on the obtained parameters, sensor position, test activities and subjectcharacteristics were prepared in tabular form from each publication. 16 anatomical and physiologi- cal parameters influencing pelvic floor health were identified in 17 published studies and rankedfor their statistical significance. Taken together, this review could serve as a basis for the develop-ment of novel sensors which could allow for quantifiable prevention and diagnosis, as well as par-ticularized documentation of rehabilitation processes related to pelvic floor dysfunctions.}, language = {en} } @article{FoerstlAdlerSuessetal., author = {F{\"o}rstl, Nikolas and Adler, Ina and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Technologies for Evaluation of Pelvic Floor Functionality: A Systematic Review}, series = {Sensors}, volume = {24}, journal = {Sensors}, number = {12}, publisher = {MDPI}, doi = {10.3390/s24124001}, abstract = {Pelvic floor dysfunction is a common problem in women and has a negative impact on their quality of life. The aim of this review was to provide a general overview of the current state of technology used to assess pelvic floor functionality. It also provides literature research of the physiological and anatomical factors that correlate with pelvic floor health. This systematic review was conducted according to the PRISMA guidelines. The PubMed, ScienceDirect, Cochrane Library, and IEEE databases were searched for publications on sensor technology for the assessment of pelvic floor functionality. Anatomical and physiological parameters were identified through a manual search. In the systematic review, 114 publications were included. Twelve different sensor technologies were identified. Information on the obtained parameters, sensor position, test activities, and subject characteristics was prepared in tabular form from each publication. A total of 16 anatomical and physiological parameters influencing pelvic floor health were identified in 17 published studies and ranked for their statistical significance. Taken together, this review could serve as a basis for the development of novel sensors which could allow for quantifiable prevention and diagnosis, as well as particularized documentation of rehabilitation processes related to pelvic floor dysfunctions.}, language = {en} } @article{FoerstlSuessEnglertetal., author = {F{\"o}rstl, Nikolas and S{\"u}ß, Franz and Englert, Carsten and Dendorfer, Sebastian}, title = {Design of a reverse shoulder implant to measure shoulder stiffness during implant component positioning}, series = {Medical Engineering \& Physics}, volume = {121}, journal = {Medical Engineering \& Physics}, edition = {Journal Pre-proof}, publisher = {Elsevier}, doi = {10.1016/j.medengphy.2023.104059}, pages = {22}, abstract = {To avoid dislocation of the shoulder joint after reverse total shoulder arthroplasty, it is important to achieve sufficient shoulder stability when placing the implant components during surgery. One parameter for assessing shoulder stability can be shoulder stiffness. The aim of this research was to develop a temporary reverse shoulder implant prototype that would allow intraoperative measurement of shoulder stiffness while varying the position of the implant components. Joint angle and torque measurement techniques were developed to determine shoulder stiffness. Hall sensors were used to measure the joint angles by converting the magnetic flux densities into angles. The accuracy of the joint angle measurements was tested using a test bench. Torques were determined by using thin-film pressure sensors. Various mechanical mechanisms for variable positioning of the implant components were integrated into the prototype. The results of the joint angle measurements showed measurement errors of less than 5° in a deflection range of ±15° adduction/abduction combined with ±45° flexion/extension. The proposed design provides a first approach for intra-operative assessment of shoulder stiffness. The findings can be used as a technological basis for further developments.}, language = {en} } @inproceedings{GalibarovAlMunajjedDendorferetal., author = {Galibarov, Pavel E. and Al-Munajjed, Amir Andreas and Dendorfer, Sebastian and Christensen, Soeren Toerholm and Rasmussen, John}, title = {The effect of varying the stiffness of spinal fusion devices on the adjacent levels using multibody dynamics simulation}, series = {Orthopaedic Proceedings}, volume = {94-B}, booktitle = {Orthopaedic Proceedings}, number = {SUPP_XL01 Sep 2012}, pages = {2}, abstract = {INTRODUCTION Several clinical studies demonstrated long-term adjacent-level effects after implantation of spinal fusion devices[1]. These effects have been reported as adjacent joint degeneration and the development of new symptoms correlating with adjacent segment degeneration[2] and the trend has therefore gone to motion preservation devices; however, these effects have not been understood very well and have not been investigated thoroughly[3]. The aim of this study is to investigate the effect of varying the stiffness of spinal fusion devices on the adjacent vertebral levels. Disc forces, moments and facet joint forces were analyzed. METHODS The AnyBody Modeling System was used to compute the in-vivo muscle and joint reaction forces of a musculoskeletal model. The full body model used in this study consists of 188 muscle fascicles in the lumbar spine and more than 1000 individual muscle branches in total. The model has been proposed by de Zee et al.[3], validated by Rasmussen et al.[4] and by Galibarov et al.[5]. The new model[5] determines the individual motions between vertebrae based on the equilibrium between forces acting on the vertebrae from muscles and joints and the passive stiffness in disks and ligaments, figure 1a. An adult of 1.75 m and 75 kg with a spinal implant in L4L5 was modeled. This model was subjected to a flexion-extension motion using different elastic moduli to analyze and compare to a non-implanted scenario. The analyzed variables were vertebral motion, the disc reaction forces and moments, as well as facet joint forces in the treated and the adjacent levels: L2L3, L3L4, L4L5 and L5-Sacrum. RESULTS When introducing a spinal fusion device in the L4L5 joint the reaction forces and moments decreased in this joint with stiffer devices leading to lower joint loads. However, in the adjacent joints, L3L4 and L5Sacrum, an increase was observed when implanting stiffer devices. Similar trends could be found for the L2L3 joint. The loads in the facet joints showed the same trends. While introducing a spinal fusion device reduced the facet joint forces in the treated joint, the loads in the adjacent facet joints were increased according to the stiffness of the implanted device, figure 1b. DISCUSSION While the treated disc joint showed reduced motion and loads, the adjacent levels demonstrated a significant increase. In particular, the increased facet joint forces in the adjacent levels can lead to adjacent level facet pain or accelerated facet joint degeneration. Introducing a device resulted in preventing facet contact and therefore facet joint loads, even using the device with the lowest stiffness. CONCLUSION The presented model shows that clinical complications such as facet joint degeneration in adjacent levels after implantation of spinal fusion device are consistent with the change in the mechanical-stimulus distribution in the system.}, language = {en} } @inproceedings{GalibarovDendorferChristensen, author = {Galibarov, Pavel E. and Dendorfer, Sebastian and Christensen, Soeren Toerholm}, title = {On modelling spine curvature dependent on muscular and external forces in multibody dynamics system}, series = {International Society of Biomechanics (ISB), 13th congress, 2011, Brussels, Belgium}, booktitle = {International Society of Biomechanics (ISB), 13th congress, 2011, Brussels, Belgium}, pages = {2}, abstract = {This paper presents a computational approach for investigating effect of muscular and external forces on curvature of the lumbar spine. Multibody dynamics system is used to compute the lumbar spine curvature using a force-dependent kinematics facility, e.g. this method allows releasing some degrees of freedom in order to be computed based on the current load configuration.}, language = {en} } @inproceedings{GalibarovDendorferRasmussen, author = {Galibarov, Pavel E. and Dendorfer, Sebastian and Rasmussen, John}, title = {Two Computational Models of the Lumbar Spine:}, series = {Proceedings of the 2011 ORS Annual Meeting, Long Beach, CA, vol. Marie Curie Initial Training Network "SpineFX"}, booktitle = {Proceedings of the 2011 ORS Annual Meeting, Long Beach, CA, vol. Marie Curie Initial Training Network "SpineFX"}, language = {en} } @article{GeithEckmannHaspingeretal., author = {Geith, Markus A. and Eckmann, Jakob D. and Haspinger, Daniel Ch. and Agrafiotis, Emmanouil and Maier, Dominik and Szabo, Patrick and Sommer, Gerhard and Schratzenstaller, Thomas and Holzapfel, Gerhard A.}, title = {Experimental and mathematical characterization of coronary polyamide-12 balloon catheter membranes}, series = {PLoS One}, volume = {15}, journal = {PLoS One}, number = {6}, publisher = {PLOS}, doi = {10.1371/journal.pone.0234340}, pages = {1 -- 22}, abstract = {The experimental quantification and modeling of the multiaxial mechanical response of polymer membranes of coronary balloon catheters have not yet been carried out. Due to the lack of insights, it is not shown whether isotropic material models can describe the material response of balloon catheter membranes expanded with nominal or higher, supra-nominal pressures. Therefore, for the first time, specimens of commercial polyamide-12 balloon catheters membranes were investigated during uniaxial and biaxial loading scenarios. Furthermore, the influence of kinematic effects on the material response was observed by comparing results from quasi-static and dynamic biaxial extension tests. Novel clamping techniques are described, which allow to test even tiny specimens taken from the balloon membranes. The results of this study reveal the semi-compliant, nonlinear, and viscoelastic character of polyamide-12 balloon catheter membranes. Above nominal pressure, the membranes show a pronounced anisotropic mechanical behavior with a stiffer response in the circumferential direction. The anisotropic feature intensifies with an increasing strain-rate. A modified polynomial model was applied to represent the realistic mechanical response of the balloon catheter membranes during dynamic biaxial extension tests. This study also includes a compact set of constitutive model parameters for the use of the proposed model in future finite element analyses to perform more accurate simulations of expanding balloon catheters.}, language = {en} } @article{GeithNothdurfterHeimletal., author = {Geith, Markus A. and Nothdurfter, Laurenz and Heiml, Manuel and Agrafiotis, Emmanouil and Gruber, Markus and Sommer, Gerhard and Schratzenstaller, Thomas and Holzapfel, Gerhard A.}, title = {Quantifying stent-induced damage in coronary arteries by investigating mechanical and structural alterations}, series = {Acta Biomaterialia}, volume = {116}, journal = {Acta Biomaterialia}, number = {October}, publisher = {Elsevier}, doi = {10.1016/j.actbio.2020.08.016}, pages = {285 -- 301}, abstract = {Vascular damage develops with diverging severity during and after percutaneous coronary intervention with stent placement and is the prevailing stimulus for in-stent restenosis. Previous work has failed to link mechanical data obtained in a realistic in vivo or in vitro environment with data collected during imaging processes. We investigated whether specimens of porcine right coronary arteries soften when indented with a stent strut shaped structure, and if the softening results from damage mechanisms inside the fibrillar collagen structure. To simulate the multiaxial loading scenario of a stented coronary artery, we developed the testing device 'LAESIO' that can measure differences in the stress-stretch behavior of the arterial wall before and after the indentation of a strut-like stamp. The testing protocol was optimized according to preliminary experiments, more specifically equilibrium and relaxation tests. After chemical fixation of the specimens and subsequent tissue clearing, we performed three-dimensional surface and second-harmonic generation scans on the deformed specimens. We analyzed and correlated the mechanical response with structural parameters of high-affected tissue located next to the stamp indentation and low-affected tissue beyond the injured area. The results reveal that damage mechanisms, like tissue compression as well as softening, fiber dispersion, and the lesion extent, are direction-dependent, and the severity of them is linked to the strut orientation, indentation pressure, and position. The findings highlight the need for further investigations by applying the proposed methods to human coronary arteries. Additional data and insights might help to incorporate the observed damage mechanisms into material models for finite element analyses to perform more accurate simulations of stent-implantations.}, language = {en} } @inproceedings{GeithSommerSchratzenstalleretal., author = {Geith, Markus A. and Sommer, Gerhard and Schratzenstaller, Thomas and Holzapfel, Gerhard A.}, title = {First Approaches in Quantifying Acute Vascular Damage due to Stenting}, series = {23rd Congress of the European Society of Biomechanics, July 2-5,2017, Seville, Spain}, booktitle = {23rd Congress of the European Society of Biomechanics, July 2-5,2017, Seville, Spain}, subject = {Stent}, language = {en} } @article{GeithSommerSchratzenstalleretal., author = {Geith, Markus A. and Sommer, Gerhard and Schratzenstaller, Thomas and Holzapfel, Gerhard A.}, title = {Biomechanical and structural quantification of vascular damage: A unique investigation of stent implantation}, series = {Artery Research}, volume = {20}, journal = {Artery Research}, number = {Issue C}, doi = {10.1016/j.artres.2017.10.025}, pages = {50}, language = {en} } @article{GeithSwidergalHochholdingeretal., author = {Geith, Markus A. and Swidergal, Krzysztof and Hochholdinger, Bernd and Schratzenstaller, Thomas and Wagner, Marcus and Holzapfel, Gerhard A.}, title = {On the importance of modeling balloon folding, pleating, and stent crimping: An FE study comparing experimental inflation tests}, series = {International Journal for Numerical Methods in Biomedical Engineering}, volume = {35}, journal = {International Journal for Numerical Methods in Biomedical Engineering}, number = {11}, publisher = {Wiley}, doi = {10.1002/cnm.3249}, abstract = {Finite element (FE)-based studies of preoperative processes such as folding,pleating, and stent crimping with a comparison with experimental inflation tests are not yet available. Therefore, a novel workflow is presented in which residual stresses of balloon folding and pleating, as well as stent crimping, and the geometries of all contact partners were ultimately implemented in an FE code to simulate stent expansion by using an implicit solver. The numerical results demonstrate that the incorporation of residual stresses and strains experienced during the production step significantly increased the accuracy of the subsequent simulations, especially of the stent expansion model. During the preoperative processes, stresses inside the membrane and the stent material also reached a rather high level. Hence, there can be no presumption that balloon catheters or stents are undamaged before the actual surgery. The implementation of the realistic geometry, in particular the balloon tapers, and the blades of the process devices improved the simulation of the expansion mech-anisms, such as dogboning, concave bending, or overexpansion of stent cells. This study shows that implicit solvers are able to precisely simulate the mentioned preoperative processes and the stent expansion procedure without a preceding manipulation of the simulation time or physical mass.}, subject = {Stent}, language = {en} } @misc{GeithSwidergalSchratzenstalleretal., author = {Geith, Markus A. and Swidergal, Krzysztof and Schratzenstaller, Thomas and Holzapfel, Gerhard A. and Wagner, Marcus}, title = {Numerical analysis of stent delivery systems during pre- and intraoperative processes}, series = {15. Deutsches LS-DYNA Forum, 15.-17.10.2018, Bamberg}, journal = {15. Deutsches LS-DYNA Forum, 15.-17.10.2018, Bamberg}, language = {en} } @inproceedings{GeithWagner, author = {Geith, Markus A. and Wagner, Marcus}, title = {Numerical Analysis Of Stent Delivery Systems During Pre- And Intraoperative Processes}, series = {Deutsches LS-DYNA Forum 2018, Bamberg}, booktitle = {Deutsches LS-DYNA Forum 2018, Bamberg}, language = {en} } @article{GoldhackerRosengarthAnstisetal., author = {Goldhacker, Markus and Rosengarth, Katharina and Anstis, Stuart and Wirth, Anna and Plank, Tina and Greenlee, Mark W.}, title = {FMRI evidence for perceptual filling-in in patients with macular dystrophy}, series = {Perception}, volume = {42}, journal = {Perception}, issn = {1468-4233}, pages = {72 -- 73}, language = {en} } @article{GoldhackerRosengarthPlanketal., author = {Goldhacker, Markus and Rosengarth, Katharina and Plank, Tina and Greenlee, Mark W.}, title = {The effect of feedback on performance and brain activation during perceptual learning}, series = {Vision research}, volume = {99}, journal = {Vision research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1878-5646}, doi = {10.1016/j.visres.2013.11.010}, pages = {99 -- 110}, abstract = {We investigated the role of informative feedback on the neural correlates of perceptual learning in a coherent-motion detection paradigm. Stimulus displays consisted of four patches of moving dots briefly (500 ms) presented simultaneously, one patch in each visual quadrant. The coherence level was varied in the target patch from near threshold to high, while the other three patches contained only noise. The participants judged whether coherent motion was present or absent in the target patch. To guarantee central fixation, a secondary RSVP digit-detection task was performed at fixation. Over six training sessions subjects learned to detect coherent motion in a predefined quadrant (i.e., the learned location). Half of our subjects were randomly assigned to the feedback group, where they received informative feedback after each response during training, whereas the other group received non-informative feedback during training that a response button was pressed. We investigated whether the presence of informative feedback during training had an influence on the learning success and on the resulting BOLD response. Behavioral data of 24 subjects showed improved performance with increasing practice. Informative feedback promoted learning for motion displays with high coherence levels, whereas it had little effect on learning for displays with near-threshold coherence levels. Learning enhanced fMRI responses in early visual cortex and motion-sensitive area MT+ and these changes were most pronounced for high coherence levels. Activation in the insular and cingulate cortex was mainly influenced by coherence level and trained location. We conclude that feedback modulates behavioral performance and, to a lesser extent, brain activation in areas responsible for monitoring perceptual learning.}, language = {en} } @article{GradNadammalSchultheissetal., author = {Grad, Marius and Nadammal, Naresh and Schultheiss, Ulrich and Lulla, Philipp and Noster, Ulf}, title = {An Integrative Experimental Approach to Design Optimization and Removal Strategies of Supporting Structures Used during L-PBF of SS316L Aortic Stents}, series = {Applied Sciences}, volume = {11}, journal = {Applied Sciences}, number = {19}, publisher = {MPDL}, doi = {10.3390/app11199176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-25612}, pages = {1 -- 22}, abstract = {One of the fundamental challenges in L-PBF of filigree geometries, such as aortic stents used in biomedical applications, is the requirement for a robust yet easily removable support structure that allows each component to be successfully fabricated without distortion. To solve this challenge, an integrative experimental approach was attempted in the present study by identifying an optimal support structure design and an optimized support removal strategy for this design. The specimens were manufactured using four different support structure designs based on the geometry exposed to the laser beam during the L-PBF. Support removal procedures included sand blasting (SB), glass bead blasting (GB), and electrochemical polishing (ECP). The two best-performing designs (line and cross) were chosen due to shorter lead times and lower material consumption. As an additional factor that indicates a stable design, the breaking load requirement to remove the support structures was determined. A modified line support with a 145° included angle was shown to be the best support structure design in terms of breaking load, material consumption, and manufacturing time. All three procedures were used to ensure residue-free support removal for this modified line support design, with ECP proving to be the most effective.}, language = {en} } @misc{GreenleeAnstisRosengarthetal., author = {Greenlee, Mark W. and Anstis, Stuart and Rosengarth, Katharina and Goldhacker, Markus and Brandl-R{\"u}hle, Sabine and Plank, Tina}, title = {Neural correlates of perceptual filling-in: fMRI evidence in the foveal projection zone of patients with central scotoma}, series = {Journal of Vision / Vision Sciences Society Annual Meeting Abstract}, volume = {12}, journal = {Journal of Vision / Vision Sciences Society Annual Meeting Abstract}, number = {9}, publisher = {ARVO}, issn = {1534-7362}, doi = {10.1167/12.9.1303}, abstract = {Patients with juvenile retinal dystrophy often report that they are unaware of their central scotoma, suggesting the presence of perceptual filling-in. We used functional Magnetic Resonance Imaging (fMRI) to determine possible neural correlates of perceptual filling-in in patients with retinal distrophy and clinically established central scotoma in both eyes. The data of 5 patients (Stargardt disease, cone-rod dystrophy; mean age 45 yrs; scotoma diameter 10-20°) and of 5 normally sighted controls were analyzed. Fixation behaviour and perimetry were measured with a Nidek microperimeter. Magnetic resonance imaging was performed using a Siemens 3T Allegra scanner. We stimulated the central visual field (30 deg) with a vertically oriented, low spatial frequency (1 c/deg) high-contrast sinewave grating that was either a) continuous, or b) was interrupted by a central grey disk. The disk was either slightly larger than the scotoma (detectable on 75\% of trials) or slightly smaller (detectable on 25\% of trials). To control for attention, an eccentric fixation task was performed during scanning. Data were analyzed using SPM8 (GLM with ROI analysis to obtain percent signal change for foveal projection zone). Results: for all patients, the BOLD signal in the foveal projection area was significantly higher for the small disk (i.e., condition leading to complete filling-in) than for the large disk (i.e., no filling-in). This effect was absent in the control subjects. Our findings support the existence of an active neural process that leads to filling-in in patients with central visual field scotomata.}, language = {en} } @article{GreenleeRosengarthSchmalhoferetal., author = {Greenlee, Mark W. and Rosengarth, Katharina and Schmalhofer, Carolin and Goldhacker, Markus and Brandl-R{\"u}hle, Sabine and Plank, Tina}, title = {Perceptual learning in patients with central scotomata due to hereditary and age-related macular dystrophy}, series = {Journal of Vision}, volume = {14}, journal = {Journal of Vision}, number = {10}, publisher = {ARVO}, doi = {10.1167/14.10.666}, pages = {666}, abstract = {Hereditary and age-related forms of macular dystrophy (MD) are characterized by loss of cone function in the fovea, leading to central scotomata and eccentric fixation at the so-called preferred retinal locus (PRL). We investigated whether perceptual learning enhances visual abilities at the PRL. We also determined the neural correlates (3-Tesla fMRI) of learning success. Twelve MD patients (eight with age-related macular dystrophy, four with hereditary macular dystrophies) were trained on a texture discrimination task (TDT) over six days. Patients underwent three fMRI sessions (before, during and after training) while performing the TDT (target at PRL or opposite PRL). Reading speed, visual acuity (Vernier task) and contrast sensitivity were also assessed before and after training. With one exception, all patients showed improved performance (i.e. significant decrease in stimulus onset asynchronies and reaction times, significant increase in hit rates) on the TDT. Eight patients also showed moderate increases in reading speed, six patients showed improved thresholds in contrast sensitivity and nine patients showed improved thresholds in a vernier visual acuity task after TDT training. We found an increase in BOLD response in the projections zone of the PRL in the primary visual cortex in nine of twelve patients after training. The change in fMRI signal correlated (r = .8; p = .02) with the patients{\^a}€™ performance enhancements when the target was in the PRL. The results suggest that perceptual learning can enhance eccentric vision and cortical processing in MD patients.}, language = {en} } @article{GreenleeRosengarthSchmalhoferetal., author = {Greenlee, Mark W. and Rosengarth, Katharina and Schmalhofer, Caroline and Goldhacker, Markus and Brandl-R{\"u}hle, Sabine and Plank, Tina}, title = {Perceptual learning in patients with central scotomata due to hereditary and age-related macular dystrophy}, series = {Journal of Vision}, volume = {14}, journal = {Journal of Vision}, number = {10}, publisher = {ARVO}, issn = {1468-4233}, doi = {10.1167/14.10.666}, abstract = {Hereditary and age-related forms of macular dystrophy (MD) are characterized by loss of cone function in the fovea, leading to central scotomata and eccentric fixation at the so-called preferred retinal locus (PRL). We investigated whether perceptual learning enhances visual abilities at the PRL. We also determined the neural correlates (3-Tesla fMRI) of learning success. Twelve MD patients (eight with age-related macular dystrophy, four with hereditary macular dystrophies) were trained on a texture discrimination task (TDT) over six days. Patients underwent three fMRI sessions (before, during and after training) while performing the TDT (target at PRL or opposite PRL). Reading speed, visual acuity (Vernier task) and contrast sensitivity were also assessed before and after training. With one exception, all patients showed improved performance (i.e. significant decrease in stimulus onset asynchronies and reaction times, significant increase in hit rates) on the TDT. Eight patients also showed moderate increases in reading speed, six patients showed improved thresholds in contrast sensitivity and nine patients showed improved thresholds in a vernier visual acuity task after TDT training. We found an increase in BOLD response in the projections zone of the PRL in the primary visual cortex in nine of twelve patients after training. The change in fMRI signal correlated (r = .8; p = .02) with the patients{\^a}€™ performance enhancements when the target was in the PRL. The results suggest that perceptual learning can enhance eccentric vision and cortical processing in MD patients.}, language = {en} } @inproceedings{GrossSuessVerkerkeetal., author = {Gross, Simon and S{\"u}ß, Franz and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {Simulating fatigue in musculoskeletal models using surface electromyography, ECCOMAS Congress, Crete, Greece, 201}, series = {ECCOMAS Congress, Crete, Greece, 2016}, booktitle = {ECCOMAS Congress, Crete, Greece, 2016}, language = {en} } @inproceedings{GrossVerkerkeDendorfer, author = {Gross, Simon and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {Combined Experimental and Numerical Approach to Investigate Changes in Muscle Recruitment Pattern of the Back Muscles during Exhausting Exercise}, series = {World Congress Biomechanics Dublin, 2018}, booktitle = {World Congress Biomechanics Dublin, 2018}, abstract = {In recent years, musculoskeletal computation has become a widely used tool to investigate joint and muscle forces within the human body. However, the issue of muscle fatigue is not considered adequately in most models and is a challenging task. One aspect that needs to be examined is the interaction of muscles during an exhausting task. Therefore, an experimental study was designed to analyze the changes of back muscle recruitment pattern during such exercises. In this study 38 subjects (27 male, 11 female, height = 177±8.5 cm, weight = 74.0±13.6 kg) participated. Each subject had to perform three static and three dynamic exhausting exercises where the back muscles were loaded with subject specific forces using a dynamometer adapter especially designed for the trunk muscles. To collect the muscle activity, twelve surface electromyography sensors were applied on the back, and four on the abdominal muscles. Muscle activity and fatigue were analyzed by calculating the maximum voluntary contraction normalized signal and the median frequency. At first the fatigue of m. erector spinae and m. multifidi was analyzed, since these muscles carry the main load during the exercises. Subsequently the activity of the m. trapezius, m. rectus abdominis and m. obliquus externus were investigated to determine recruitment patterns. To gain more detailed information of these patterns a numerical model was built using the AnyBody Modeling System™. Analyzing the measurements, we can observe an increasing muscle activity during isokinetic exercises while the force is constant. Since the activity in the simulation is defined as the current force output divided by the strength of the muscle, the strength parameter was scaled down based on the measured data, assuming a linear force - activity correlation, and using a numerical algorithm considering the influence of cross talk. The results show, that changes in recruitment pattern can be divided into three major subgroups. Prior to total exhaustion, some of the subjects show additional activation of muscles in the trapezius region, while other subjects show an additional activation of abdominal muscles, increasing the intra-abdominal pressure which supports the spine. In the third group an activation in both regions can be observed. The numerical simulations show an increasing activity of abdominal muscles as well as muscles in the upper back. Especially the m. latissimus dorsi shows a significantly higher activity. The results lead to the conclusion that prior to total exhaustion, additional muscles are recruited to support the main muscles. It was shown that abdominal muscles are activated to support back muscles by pressurizing the trunk cavity to delay total exhaustion as long as possible. In conclusion, the results show that changes in muscle recruitment pattern need to be considered when introducing muscle fatigue to musculoskeletal models.}, language = {en} } @inproceedings{GrossVerkerkeDendorfer, author = {Gross, Simon and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {Investigation of external load dependent static and dynamic muscle fatigue}, series = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, booktitle = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, language = {en} } @inproceedings{HammerDendorfer, author = {Hammer, Joachim and Dendorfer, Sebastian}, title = {Cyclic loading and microstructure of cancellous bone}, series = {Journal of Biomechanics}, volume = {41}, booktitle = {Journal of Biomechanics}, number = {Suppl. 1, July 2008}, doi = {10.1016/S0021-9290(08)70409-3}, pages = {S410}, language = {en} } @article{HausleiterKastratiWesselyetal., author = {Hausleiter, J{\"o}rg and Kastrati, Adnan and Wessely, Rainer and Dibra, Alban and Mehilli, Julinda and Schratzenstaller, Thomas and Graf, Isolde and Renke-Gluszko, Magdalena and Behnisch, Boris and Dirschinger, Josef and Wintermantel, Erich and Sch{\"o}mig, Albert}, title = {Prevention of restenosis by a novel drug-eluting stent system with a dose-adjustable, polymer-free, on-site stent coating}, series = {European Heart Journal - Clinical research}, volume = {26}, journal = {European Heart Journal - Clinical research}, number = {15}, doi = {10.1093/eurheartj/ehi405}, pages = {1475 -- 1481}, abstract = {Aims Drug-eluting stents (DES) represent a major advance in interventional cardiology. Along with the success shown, current DES also present limitations related to the presence of polymer-coating, fixed drug, and dose used. With the ISAR (Individualized Drug-Eluting Stent System to Abrogate Restenosis) project, a DES system has been developed that permits individualized choice of the drug and dose to use for the given patient. The objective of this prospective dose finding study was to assess the feasibility, safety, and efficacy of a polymer-free on-site stent coating with increasing rapamycin doses. Methods and results In this dose finding study, 602 patients were sequentially enrolled in four groups: microporous bare metal stent (BMS), DES stents coated with a 0.5, 1.0, and 2.0\% rapamycin solution. The angiographic in-segment restenosis rate at follow-up angiography was the primary study endpoint. In-segment restenosis was significantly reduced from 25.9\% with BMS to 18.9, 17.2, and 14.7\% with 0.5, 1.0, and 2.0\% rapamycin-eluting stents, respectively (P=0.024). Similarly, the need for target lesion revascularization at 1 year follow-up was reduced from 21.5\% with BMS to 16.4, 12.6, and 8.8\% with 0.5, 1.0, and 2.0\% rapamycin-eluting stents, respectively (P=0.006). Conclusion The placement of polymer-free stents coated on-site with rapamycin is feasible and safe. Furthermore, a dose-dependent efficacy in restenosis prevention is achievable with this new DES concept.}, language = {en} } @article{HeineEigenbergerBrebantetal., author = {Heine, Norbert and Eigenberger, Andreas and Brebant, Vanessa and Hoesl, Vanessa and Brix, Eva and Prantl, Lukas and Kempa, Sally}, title = {Comparison of skin sensitivity following breast reconstruction with three different techniques: Autologous fat grafting, DIEP flap and expander/implant}, series = {Clinical Hemorheology and Microcirculation}, volume = {80}, journal = {Clinical Hemorheology and Microcirculation}, number = {4}, publisher = {IOS Press}, issn = {1875-8622}, doi = {10.3233/ch-219203}, pages = {389 -- 397}, abstract = {BACKGROUND: Autologous fat grafting (AFG) has been established over the past two decades as an additive technique during and after breast reconstruction. Complete reconstruction of the breast mound with AFG alone represents an exceptional technique that has been published mostly in case reports or in studies with limited cases.The purpose of this study is to investigate the influence of three different techniques for breast reconstruction on the recovery of skin sensitivity at the reconstructed breast. METHODS: The study included 30 patients after mastectomy following breast cancer. Three groups were examined: A) breast reconstruction by autologous fat grafting (AFG), B) breast reconstruction by deep inferior epigastric artery perforator flap (DIEP) and C) breast reconstruction by expander/implant (TE).Biometric data were compared; sensitivity tests were performed using Semmes-Weinstein monofilaments.The non-operated, healthy contralateral breasts of the patients were used as a reference. RESULTS: While the traditional reconstruction techniques by microsurgical anastomosed perforator flap or expander/implant showed a strongly decreased or completely missing sensitivity of the skin, the tests after reconstruction by AFG represented high values of sensory recovery, which came close to the reference group of non-operated breasts. CONCLUSION: To our knowledge, this is the first study to compare skin sensitivity after AFG-based reconstruction to established techniques for breast reconstruction. We could demonstrate in a limited group of patients, that breast reconstruction by autologous fat grafting can achieve higher values of skin sensitivity compared to traditional techniques.}, subject = {Mammoplastik}, language = {en} } @article{HeineEigenbergerBrebantetal., author = {Heine, Norbert and Eigenberger, Andreas and Brebant, Vanessa and Kempa, Sally and Seitz, Stephan and Prantl, Lukas and Kuehlmann, Britta}, title = {The effect of radiotherapy on fat engraftment for complete breast reconstruction using lipofilling only}, series = {Archives of Gynecology and Obstetrics}, journal = {Archives of Gynecology and Obstetrics}, publisher = {Springer}, doi = {10.1007/s00404-022-06610-4}, pages = {7}, abstract = {Purpose Lipofilling has been established as a standard technique for contour enhancement following breast reconstruction. However, there is a paucity in current literature regarding the use of this technique for complete reconstruction of the female breast as an alternative to conventional techniques, such as expander or flap-based procedures. In particular, the influence of pre-operative irradiation for successful reconstruction has rarely been examined in published studies. Here, the authors describe their experience with successful fat injection in pre-radiated breasts in comparison with non-pre-radiated patients. Methods In this retrospective study, we examined a total of 95 lipofilling treatments on 26 patients (28 breasts). All of them experienced mastectomy following breast cancer; local breast defects after partial resection of the gland were not included in this study. In total, 47 lipofilling procedures in 12 non-irradiated patients (14 breasts) and 48 procedures in 14 irradiated women (also 14 breasts) were performed. Per session, approximately 297 +/- 112 cc of adipose tissue was grafted in group A (no radiotherapy) and approximately 259 +/- 93 cc was grafted in group B (radiotherapy). Results Among the group of women without pre-operative radiation, 71\% of breast reconstructions limited to lipofilling only showed constant engraftment of fat tissue with a successful reconstructive result, whereas only 21\% of the patients with pre-radiated breasts showed complete reconstruction of the breast with a permanent fat in-growth. Conclusion Preoperative radiotherapy significantly impedes successful completion of breast reconstructions planned only by autologous fat transfer. Patients should be selected individually and carefully for complete breast reconstruction using lipofilling only.}, language = {en} } @article{HoenickaLehleJacobsetal., author = {Hoenicka, M. and Lehle, Karla and Jacobs, V. R. and Dendorfer, Sebastian and Kostorz, A. and Schmid, F. X. and Birnbaum, D. E.}, title = {Mechanical and seeding properties of human umbilical vein - a potential scaffold for a tissue-engineered vessel graft}, series = {The Thoracic and Cardiovascular Surgeon}, volume = {55}, journal = {The Thoracic and Cardiovascular Surgeon}, number = {S 1}, publisher = {Thieme}, doi = {10.1055/s-2007-967592}, pages = {P_37}, abstract = {Objectives: The mechanical properties and seeding with endothelial cells were investigated in fresh and cryopreserved human umbilical vein. Methods: Human umbilical veins (HUV) were frozen in Euro-Collins/1M DMSO at -1°C/min and stored in liquid nitrogen. Stress-strain relationships of fresh and thawed veins were determined in an uniaxial tension-testing rig. HUV endothelial cells (HUVEC) were seeded onto denuded HUV under static conditions and grown for 3d. Luminal surfaces were analyzed by scanning electron microscopy. Calcein-stained cells were seeded hyperconfluently to determine the cell retention capacity of fresh and cryopreserved veins. Results: The stress-strain relationships of HUV followed a biphasic pattern typical for natural vessels. Neither the failure stress (2.71±0.36 vs. 3.25±0.97 N, n=3) nor the displacement required to achieve failure (9.73±0.9 vs. 7.43±2.07mm, n=3) were altered by cryopreservation. The burst pressure was estimated as approx. 1000mm Hg within the limitations of the uniaxial model. HUVEC seeded onto denuded HUV formed patches (at 9E3 cells per cm2) or an almost confluent endothelium (at 3E4 cells per cm2) within three days. The capacity to retain seeded HUVEC of denuded HUV was not altered by cryopreservation (1.15±0.08E5 vs. 1.26±0.14E5 cells per cm2, n=6). Conclusions: The burst pressure of HUV seems to be sufficiently high for the human arterial circulation and is not altered by cryopreservation. HUVEC can establish a confluent endothelium on denuded HUV. Therefore HUV appears to be a suitable storable scaffold for vascular tissue engineering.}, subject = {Nabelvene}, language = {en} }