@article{WeberDendorferGrifkaetal., author = {Weber, Tim A. and Dendorfer, Sebastian and Grifka, Joachim and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias}, title = {Does Computer-Assisted Femur First THR Improve Musculoskeletal Loading Conditions?}, series = {BioMed Research International}, volume = {2015}, journal = {BioMed Research International}, editor = {Takagi, Michiaki}, doi = {10.1155/2015/625317}, pages = {ID 625317}, abstract = {We have developed a novel, computer-assisted operation method for minimal-invasive total hip replacement (THR) following the concept of "femur first/combined anteversion," which incorporates various aspects of performing a functional optimization of the prosthetic stem and cup position (CAS FF). The purpose of this study is to assess whether the hip joint reaction forces and patient's gait parameters are being improved by CAS FF in relation to conventional THR (CON). We enrolled 60 patients (28 CAS FF/32 CON) and invited them for gait analysis at three time points (preoperatively, postop six months, and postop 12 months). Data retrieved from gait analysis was processed using patient-specific musculoskeletal models. The target parameters were hip reaction force magnitude (hrf), symmetries, and orientation with respect to the cup. Hrf in the CAS FF group were closer to a young healthy normal. Phase-shift symmetry showed an increase in the CAS FF group. Hrf orientation in the CAS FF group was closer to optimum, though no edge or rim-loading occurred in the CON group as well. The CAS FF group showed an improved hrf orientation in an early stage and a trend to an improved long-term outcome.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @article{WeberAlMunajjedVerkerkeetal., author = {Weber, Tim and Al-Munajjed, Amir Andreas and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian and Renkawitz, Tobias}, title = {Influence of minimally invasive total hip replacement on hip reaction forces and their orientations}, series = {Journal of Orthopaedic Research}, volume = {32}, journal = {Journal of Orthopaedic Research}, number = {12}, doi = {10.1002/jor.22710}, pages = {1680 -- 1687}, abstract = {Minimally invasive surgery (MIS) is becoming increasingly popular. Supporters claim that the main advantages of MIS total hip replacement (THR) are less pain and a faster rehabilitation and recovery. Critics claim that safety and efficacy of MIS are yet to be determined. We focused on a biomechanical comparison between surgical standard and MIS approaches for THR during the early recovery of patients. A validated, parameterized musculoskeletal model was set to perform a squat of a 50th percentile healthy European male. A bilateral motion was chosen to investigate effects on the contralateral side. Surgical approaches were simulated by excluding the incised muscles from the computations. Resulting hip reaction forces and their symmetry and orientation were analyzed. MIS THR seemed less influential on the symmetry index of hip reaction forces between the operated and nonoperated leg when compared to the standard lateral approach. Hip reaction forces at peak loads of the standard transgluteal approach were 24\% higher on the contralateral side when compared to MIS approaches. Our results suggest that MIS THR contributes to a greater symmetry of hip reaction forces in absolute value as well as force-orientation following THR.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @inproceedings{WeberDendorferBulstraetal., author = {Weber, Tim and Dendorfer, Sebastian and Bulstra, Sjoerd K. and Grifka, Joachim and Verkerke, Gijsbertus Jacob and Renkawitz, Tim}, title = {Navigated Femur First Total Hip Arthroplasty leads to improved Biomechanical Outcome after surgery}, series = {ORS annual meeting, Las Vegas, USA, 2015}, booktitle = {ORS annual meeting, Las Vegas, USA, 2015}, language = {en} } @inproceedings{WeberDendorferBulstraetal., author = {Weber, Tim and Dendorfer, Sebastian and Bulstra, Sjoerd K. and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias}, title = {Biomechanical Outcome after computer-assisted vs. Conventional THR}, series = {ANSYS Conference \& 32th CADFEM Users' Meeting 2014, 04.-06. Juni, N{\"u}rnberg}, booktitle = {ANSYS Conference \& 32th CADFEM Users' Meeting 2014, 04.-06. Juni, N{\"u}rnberg}, language = {en} } @inproceedings{WeberDendorferBulstraetal., author = {Weber, Tim and Dendorfer, Sebastian and Bulstra, Sjoerd K. and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias}, title = {Musculoskeletal modeling for orthopedic surgery - Applications and chances}, series = {Orthopedics meets Engineering, Regensburg, 2015}, booktitle = {Orthopedics meets Engineering, Regensburg, 2015}, language = {en} } @inproceedings{WeberDendorferGrifkaetal., author = {Weber, Tim and Dendorfer, Sebastian and Grifka, Joachim and Weber, Markus and W{\"o}rner, Michael and Dullien, Silvia and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias}, title = {Verbessert die computerassistierte Femur First Operationstechnik f{\"u}r die H{\"u}ftendoprothetik den muskuloskelettalen Lastfall auf das H{\"u}ftgelenk?}, series = {DKOU 2015, Deutscher Kongress f{\"u}r Orthop{\"a}die und Unfallchirurgie 2015}, booktitle = {DKOU 2015, Deutscher Kongress f{\"u}r Orthop{\"a}die und Unfallchirurgie 2015}, language = {de} } @inproceedings{WeberDendorferRenkawitzetal., author = {Weber, Tim and Dendorfer, Sebastian and Renkawitz, Tobias and Dullien, Silvia and Grifka, Joachim}, title = {Clinical gait analysis combined with musculoskeletal modelling - coding a new generation of evaluation instruments}, series = {Deutsche Gesellschaft f{\"u}r Biomechanik, Murnau, 2011}, booktitle = {Deutsche Gesellschaft f{\"u}r Biomechanik, Murnau, 2011}, language = {en} } @article{WeberDullienGrifkaetal., author = {Weber, Tim and Dullien, Silvia and Grifka, Joachim and Renkawitz, Tobias and Dendorfer, Sebastian}, title = {Validation of a Motion Capture Laboratory and a new marker-placement protcol for clinical applications}, series = {Gait \& Posture}, volume = {38}, journal = {Gait \& Posture}, number = {Suppl. 1}, doi = {10.1016/j.gaitpost.2013.07.229}, pages = {113 -- 114}, language = {en} } @inproceedings{WeberDullienPutzeretal., author = {Weber, Tim and Dullien, Silvia and Putzer, Michael and Dendorfer, Sebastian and Renkawitz, Tobias}, title = {Biomechanical outcome after computer-assisted vs. conventional THR - study concept and preliminary gait analysis results}, series = {GAMMA Workshop, Hannover, 2012}, booktitle = {GAMMA Workshop, Hannover, 2012}, language = {en} } @inproceedings{WeberRenkawitzBulstraetal., author = {Weber, Tim and Renkawitz, Tobias and Bulstra, Sjoerd K. and Grifka, Joachim and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {Biomechanics of computer-assisted vs. conventional THR after one year follow up}, series = {XXV Congress of the International Society of Biomechanics, Glasgow, UK, 12th-16th July 2015}, booktitle = {XXV Congress of the International Society of Biomechanics, Glasgow, UK, 12th-16th July 2015}, language = {en} } @inproceedings{WeberRenkawitzGrifkaetal., author = {Weber, Tim and Renkawitz, Tobias and Grifka, Joachim and Bulstra, Sjoerd K. and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The musculoskeletal load scenario of computer-assisted Femur-First THR up to one year after surgery}, series = {VI International Conference on Computational Bioengineering, Barcelona, Sept. 2015}, booktitle = {VI International Conference on Computational Bioengineering, Barcelona, Sept. 2015}, language = {en} } @inproceedings{WeberStezowskiDullienetal., author = {Weber, Tim and Stezowski, P. and Dullien, Silvia and Dendorfer, Sebastian}, title = {Eine biomechanische Bewertung verschiedener Belastungsszenarios nach der Implantierung einer H{\"u}ft-Totalendoprothese}, series = {89. Jahrestagung der Vereinigung der Bayerischen Chirurgen e.V., 25. - 27. Juli 2012, Regensburg}, booktitle = {89. Jahrestagung der Vereinigung der Bayerischen Chirurgen e.V., 25. - 27. Juli 2012, Regensburg}, language = {de} } @inproceedings{WeberStezowskiDullienetal., author = {Weber, Tim and Stezowski, P. and Dullien, Silvia and Putzer, Michael and Dendorfer, Sebastian}, title = {Eine biomechanische Bewertung verschiedener Belastungsszenarien nach Implantierung einer H{\"u}ft-Totalendoprothese}, series = {GAMMA Workshop, Hannover, 2012}, booktitle = {GAMMA Workshop, Hannover, 2012}, language = {de} } @inproceedings{WeissGrossmannLeiboldetal., author = {Weiß, Roman and Großmann, Benjamin and Leibold, Marion and Schlegl, Thomas and Wollherr, Dirk and Weiss, Roman and Grossmann, Benjamin}, title = {Modeling and nonlinear control of antagonistically actuating pneumatic artificial muscles}, series = {2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 3-7 July 2017, Munich, Germany}, booktitle = {2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 3-7 July 2017, Munich, Germany}, publisher = {IEEE}, doi = {10.1109/AIM.2017.8014001}, pages = {94 -- 99}, abstract = {This paper discusses modeling and nonlinear control of a joint antagonistically actuated by two pneumatic, artificial muscles. A single model of the whole system is obtained by a combined physical and phenomenological modeling approach. The combined model for the joint, the muscles and the proportional valves results in a nonlinear, affine-in-control system description. The model is used to derive control laws for an input/output linearization approach to linearize the plant. Modeling and parametrization errors are covered via an outer control loop consisting of a state-feedback which is extended by an additional feedback of error integral. Extensive experimental results show the quality of the model and the performance of the respective control laws.}, language = {en} } @article{WesselyHausleiterMichaelisetal., author = {Wessely, Rainer and Hausleiter, J{\"o}rg and Michaelis, Cornelia and Jaschke, Birgit and Vogeser, Michael and Milz, Stefan and Behnisch, Boris and Schratzenstaller, Thomas and Renke-Gluszko, Magdalena and St{\"o}ver, Michael and Wintermantel, Erich and Kastrati, Adnan and Sch{\"o}mig, Albert}, title = {Inhibition of neointima formation by a novel drug-eluting stent system that allows for dose-adjustable, multiple, and on-site stent coating}, series = {Arteriosclerosis, Thrombosis, and Vascular Biology}, volume = {25}, journal = {Arteriosclerosis, Thrombosis, and Vascular Biology}, number = {4}, issn = {1524-4636}, doi = {10.1161/01.ATV.0000157579.52566.ee}, pages = {748 -- 753}, abstract = {Objective The risk of in-stent restenosis can be considerably reduced by stents eluting cytostatic compounds. We created a novel drug-eluting stent system that includes several new features in the rapidly evolving field of stent-based drug delivery. Methods and Results The aim of the present study was the preclinical evaluation of a stent-coating system permitting individual, on-site coating of stents with a unique microporous surface allowing for individualizable, dose-adjustable, and multiple coatings with identical or various compounds, designated ISAR (individualizable drug-eluting stent system to abrogate restenosis). Stents were coated with 0.75\% rapamycin solution, and high-performance liquid chromatography (HPLC)-based determination of drug release profile indicated drug release for >21 days. Rapamycin-eluting microporous (REMP) stents implanted in porcine coronary arteries were safe. To determine the efficacy of REMP stents, this novel drug-eluting stent platform was compared with the standard sirolimus-eluting stent. At 30 days, in-stent neointima formation in porcine coronary arteries was similar in both groups, yielding a significant decrease of neointimal area and injury-dependent neointimal thickness compared with bare-metal stents. Conclusion The ISAR drug-eluting stent platform as a novel concept for stent coating allows for a safe, effective, on-site stent coating process, thus justifying further clinical evaluation to decrease in-stent restenosis in humans. In-stent neointima formation can be successfully attenuated by drug-eluting stents. We introduce a novel conceptual approach for stent-coating that allows for dose-adjustable, on-site stent coating process if desired with multiple compounds. Microporous stents coated with rapamycin proved safe and effective for the limitation of neointima formation in a porcine coronary stent model.}, language = {en} } @inproceedings{WiesentGeithWagner, author = {Wiesent, Lisa and Geith, Markus A. and Wagner, Marcus}, title = {Simulation of Fluid-Structure Interaction between injection medium and balloon catheter using ICFD}, series = {11th European LS-DYNA Conference 2017, 9 - 11 May, Salzburg, Austria}, booktitle = {11th European LS-DYNA Conference 2017, 9 - 11 May, Salzburg, Austria}, isbn = {978-3981621549}, abstract = {Arteriosclerosis is a major health issue worldwide. While it is commonly treated by the implantation of an balloon-expandable stent, micro injuries may occur during stent deployment, and induce in-stent restenosis, whose consequence can be fatal. Studying this undesirable phenomenon is usually limited as experimental data is hard to obtain on ethical ground. Numerical simulation are performed to better understand this problem. To construct a more realistic simulation of a balloon-expandable stent, a partitioned strongly-coupled FSI simulation of the balloon deployment was set up using the ICFD solver of LS-DYNA, - a quite innovative approach. The complex balloon configuration as well as the interaction of the injection medium and the balloon structure was considered. The balloon structure consisting of shell elements was obtained from preliminary balloon folding and pleating simulations. The balloon consists of a flexible thin walled polyamide. The injection fluid is implemented using volume elements. Balloon deployment was initiated by a pressure boundary condition inducing a volume flow into the balloon. The initial feasibility analysis showed promising result including a continuous balloon deployment and a reasonable development of the fluid pressure and velocity field. However, applying this FSI approach to a more complex balloon structure led to a non convergent solution. The non-convergence could be mainly reduced to mechanical factors including the low wall thickness of the balloon (< 0.05 mm) and the flexibility of the polyamide. Further, the ICFD solver shows less accuracy concerning the FSI conditions when dealing with thin flexible structures as well as enclosed volumes. A shell thickness of 0.06 mm is believed to result in a convergent solution.}, subject = {Koronare Herzkrankheit}, language = {en} } @misc{WiesentHupkeBalketal., author = {Wiesent, Lisa and Hupke, Constantin and Balk, Christian and Schultheiss, Ulrich and Schratzenstaller, Thomas}, title = {Optimization of the cardiovascular stent design towards improved expansion behaviour and radial stiffness properties}, series = {Biomedizinische Technik}, volume = {63}, journal = {Biomedizinische Technik}, number = {s1}, doi = {10.1515/bmt-2018-6031}, abstract = {- Development of a FEA Tool for a realistic stent simulation - investigation on minor modification on the stent design on the expansion behaviour - analysis of three stent designs: classical stent design with pronounced dogbone effect, two modified stent design (non-dogbone-design)}, subject = {Kardiovaskul{\"a}res System}, language = {en} } @article{WiesentSchultheissSchmidetal., author = {Wiesent, Lisa and Schultheiss, Ulrich and Schmid, Christof and Schratzenstaller, Thomas and Nonn, Aida}, title = {Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning}, series = {PlOS One}, volume = {14}, journal = {PlOS One}, number = {10}, publisher = {PLOS}, doi = {10.1371/journal.pone.0224026}, pages = {1 -- 25}, abstract = {In-stent restenosis remains a major problem of arteriosclerosis treatment by stenting. Expansion-optimized stents could reduce this problem. With numerical simulations, stent designs/ expansion behaviours can be effectively analyzed. For reasons of efficiency, simplified models of balloon-expandable stents are often used, but their accuracy must be challenged due to insufficient experimental validation. In this work, a realistic stent life-cycle simulation has been performed including balloon folding, stent crimping and free expansion of the balloon-stent-system. The successful simulation and validation of two stent designs with homogenous and heterogeneous stent stiffness and an asymmetrically positioned stent on the balloon catheter confirm the universal applicability of the simulation approach. Dogboning ratio, as well as the final dimensions of the folded balloon, the crimped and expanded stent, correspond well to the experimental dimensions with only slight deviations. In contrast to the detailed stent life-cycle simulation, a displacement-controlled simulation can not predict the transient stent expansion, but is suitable to reproduce the final expanded stent shape and the associated stress states. The detailed stent life-cycle simulation is thus essential for stent expansion analysis/optimization, whereas for reasons of computational efficiency, the displacement-controlled approach can be considered in the context of pure stress analysis.}, subject = {Stent}, language = {en} } @article{WiesentSchultheissLullaetal., author = {Wiesent, Lisa and Schultheiß, Ulrich and Lulla, Philipp and Noster, Ulf and Schratzenstaller, Thomas and Schmid, Christof and Nonn, Aida and Spear, Ashley}, title = {Computational analysis of the effects of geometric irregularities and post-processing steps on the mechanical behavior of additively manufactured 316L stainless steel stents}, series = {PLoS ONE}, volume = {15}, journal = {PLoS ONE}, number = {12}, publisher = {PLOS}, doi = {10.1371/journal.pone.0244463}, pages = {1 -- 30}, abstract = {Advances in additive manufacturing enable the production of tailored lattice structures and thus, in principle, coronary stents. This study investigates the effects of process-related irregularities, heat and surface treatment on the morphology, mechanical response, and expansion behavior of 316L stainless steel stents produced by laser powder bed fusion and provides a methodological approach for their numerical evaluation. A combined experimental and computational framework is used, based on both actual and computationally reconstructed laser powder bed fused stents. Process-related morphological deviations between the as-designed and actual laser powder bed fused stents were observed, resulting in a diameter increase by a factor of 2-2.6 for the stents without surface treatment and 1.3-2 for the electropolished stent compared to the as-designed stent. Thus, due to the increased geometrically induced stiffness, the laser powder bed fused stents in the as-built (7.11 ± 0.63 N) or the heat treated condition (5.87 ± 0.49 N) showed increased radial forces when compressed between two plates. After electropolishing, the heat treated stents exhibited radial forces (2.38 ± 0.23 N) comparable to conventional metallic stents. The laser powder bed fused stents were further affected by the size effect, resulting in a reduced yield strength by 41\% in the as-built and by 59\% in the heat treated condition compared to the bulk material obtained from tensile tests. The presented numerical approach was successful in predicting the macroscopic mechanical response of the stents under compression. During deformation, increased stiffness and local stress concentration were observed within the laser powder bed fused stents. Subsequent numerical expansion analysis of the derived stent models within a previously verified numerical model of stent expansion showed that electropolished and heat treated laser powder bed fused stents can exhibit comparable expansion behavior to conventional stents. The findings from this work motivate future experimental/numerical studies to quantify threshold values of critical geometric irregularities, which could be used to establish design guidelines for laser powder bed fused stents/lattice structures.}, subject = {Koronarendoprothese}, language = {en} } @article{WiesentSpearNonn, author = {Wiesent, Lisa and Spear, Ashley and Nonn, Aida}, title = {Computational analysis of the effects of geometric irregularities on the interaction of an additively manufactured 316L stainless steel stent and a coronary artery}, series = {Journal of the Mechanical Behavior of Biomedical Materials}, volume = {125}, journal = {Journal of the Mechanical Behavior of Biomedical Materials}, publisher = {Elsevier}, issn = {1751-6161}, doi = {10.1016/j.jmbbm.2021.104878}, abstract = {Customized additively manufactured (laser powder bed fused (L-PBF)) stents could improve the treatment of complex lesions by enhancing stent-artery conformity. However, geometric irregularities inherent for L-PBF stents are expected to influence not only their mechanical behavior but also their interaction with the artery. In this study, the influence of geometrical irregularities on stent-artery interaction is evaluated within a numerical framework. Thus, computed arterial stresses induced by a reconstructed L-PBF stent model are compared to those induced by the intended stent model (also representing a stent geometry obtained from conventional manufacturing processes) and a modified CAD stent model that accounts for the increased strut thickness inherent for L-PBF stents. It was found that, similar to conventionally manufactured stents, arterial stresses are initially related to the basic stent design/topology, with the highest stresses occurring at the indentations of the stent struts. Compared to the stent CAD model, the L-PBF stent induces distinctly higher and more maximum volume stresses within the plaque and the arterial wall. In return, the modified CAD model overestimates the arterial stresses induced by the L-PBF stent due to its homogeneously increased strut thickness and thus its homogeneously increased geometric stiffness compared with the L-PBF stent. Therefore, the L-PBF-induced geometric irregularities must be explicitly considered when evaluating the L-PBF stent-induced stresses because the intended stent CAD model underestimates the arterial stresses, whereas the modified CAD model overestimates them. The arterial stresses induced by the L-PBF stent were still within the range of values reported for conventional stents in literature, suggesting that the use of L-PBF stents is conceivable in principle. However, because geometric irregularities, such as protruding features from the stent surface, could potentially damage the artery or lead to premature stent failure, further improvement of L-PBF stents is essential.}, language = {en} } @article{WongRasmussenSimonsenetal., author = {Wong, Christian and Rasmussen, John and Simonsen, Erik B. and Hansen, Lone and de Zee, Mark and Dendorfer, Sebastian}, title = {The Influence of Muscle Forces on the Stress Distribution in the Lumbar Spine}, series = {The Open Spine Journal}, volume = {3}, journal = {The Open Spine Journal}, number = {1}, doi = {10.2174/1876532701103010021}, pages = {21 -- 26}, abstract = {Introduction: Previous studies of bone stresses in the human lumbar spine have relied on simplified models when modeling the spinal musculature, even though muscle forces are likely major contributors to the stresses in the vertebral bones. Detailed musculoskeletal spine models have recently become available and show good correlation with experimental findings. A combined inverse dynamics and finite element analysis study was conducted in the lumbar spine to investigate the effects of muscle forces on a detailed musculoskeletal finite element model of the 4th lumbar vertebral body. Materials and Methodology: The muscle forces were computed with a detailed and validated inverse dynamics musculoskeletal spine model in a lifting situation, and were then applied to an orthotropic finite element model of the 4th lumbar vertebra. The results were compared with those from a simplified load case without muscles. Results: In general the von Mises stress was larger by 30\%, and even higher when looking at the von Mises stress distribution in the superio-anterior and central part of the vertebral body and in the pedicles. Conclusion: The application of spine muscles to a finite element model showed markedly larger von Mises stress responses in the central and anterior part of the vertebral body, which can be tolerated in the young and healthy spine, but it would increase the risk of compression fractures in the elderly, osteoporotic spine.}, subject = {Lendenwirbels{\"a}ule}, language = {en} } @article{ZellnerHierlMuelleretal., author = {Zellner, Johannes and Hierl, Katja and Mueller, Michael and Pfeifer, Christian and Berner, Arne and Dienstknecht, Thomas and Krutsch, Werner and Geis, Sebastian and Gehmert, Sebastian and Kujat, Richard and Dendorfer, Sebastian and Prantl, Lukas and Nerlich, Michael and Angele, Peter}, title = {Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone}, series = {Journal of Biomedical Materials Research Part B Applied Biomaterials}, volume = {101}, journal = {Journal of Biomedical Materials Research Part B Applied Biomaterials}, number = {7}, editor = {Gilbert, Jeremy}, doi = {10.1002/jbm.b.32922}, pages = {1133 -- 1142}, abstract = {Meniscal tears in the avascular zone have a poor self-healing potential, however partial meniscectomy predisposes the knee for early osteoarthritis. Tissue engineering with mesenchymal stem cells and a hyaluronan collagen based scaffold is a promising approach to repair meniscal tears in the avascular zone. 4 mm longitudinal meniscal tears in the avascular zone of lateral menisci of New Zealand White Rabbits were performed. The defect was left empty, sutured with a 5-0 suture or filled with a hyaluronan/collagen composite matrix without cells, with platelet rich plasma or with autologous mesenchymal stem cells. Matrices with stem cells were in part precultured in chondrogenic medium for 14 days prior to the implantation. Menisci were harvested at 6 and 12 weeks. The developed repair tissue was analyzed macroscopically, histologically and biomechanically. Untreated defects, defects treated with suture alone, with cell-free or with platelet rich plasma seeded implants showed a muted fibrous healing response. The implantation of stem cell-matrix constructs initiated fibrocartilage-like repair tissue, with better integration and biomechanical properties in the precultured stem cell-matrix group. A hyaluronan-collagen based composite scaffold seeded with mesenchymal stem cells is more effective in the repair avascular meniscal tear with stable meniscus-like tissue and to restore the native meniscus.}, subject = {Meniskusschaden}, language = {en} } @misc{OPUS4-330, title = {Medicine Meets Engineering: Proceedings of the 2nd Conference on Applied Biomechanics Regensburg}, editor = {Hammer, Joachim and Nerlich, Michael and Dendorfer, Sebastian}, edition = {1. Aufl.}, publisher = {IOS Press, US}, isbn = {978-1586038281}, pages = {X, 247}, abstract = {Biomedical Engineering is defined as the science that integrates medical and engineering sciences to improve diagnosis and treatment of patients. Only by this integration progress can be achieved. Both medical and engineering sciences comprise a huge diversity in topics, so it is imaginable that Biomedical Engineering, combining these two science areas, is even more huge. Thanks to this megadisciplinary approach many breakthroughs can be achieved. More and more research groups realize this and start new research projects, which results in a rapid increase in knowledge in Biomedical Engineering. This will only benefit the main goal of Biomedical Engineering; improving diagnosis and treatment of patients when it is spread and applied. The 2nd Regensburg Applied Biomechanics conference is special in that it realized both the distribution of new knowledge and the essential integration of medical and engineering specialists. The conference dealt with the latest results in applied biomechanics, ranging from fundamental bone strength properties via bone remodeling phenomena to new implants that replace lost human functions. Also new research areas like robot surgery and tissue engineering were discussed.}, subject = {Biomechanik}, language = {en} } @misc{OPUS4-14, title = {Gute Technik f{\"u}r ein gutes Leben im Alter?}, editor = {Frommeld, Debora and Scorna, Ulrike and Haug, Sonja and Weber, Karsten}, publisher = {transcript Verlag}, address = {Bielefeld}, isbn = {978-3-8376-5469-1}, doi = {10.14361/9783839454695}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-149}, pages = {372}, abstract = {L{\"a}ngst gibt es altersgerechte digitale Assistenzsysteme. Doch sind Umfang und Geschwindigkeit ihrer Verbreitung sowohl in Pflegeeinrichtungen als auch in privaten Haushalten weitgehend unbekannt. Informationen zu tats{\"a}chlich eingesetzten Systemen, realisierten Ums{\"a}tzen und Marktvolumen sind kaum zu finden. Obwohl es viele Vermutungen hinsichtlich der Hindernisse bei der Einf{\"u}hrung altersgerechter Assistenzsysteme gibt, sind auch hier verl{\"a}ssliche Aussagen rar. Die Beitr{\"a}ge des Bandes liefern auf Basis empirischer Untersuchungen und theoretischer {\"U}berlegungen Antworten und zeigen auf, wie vielgestaltig die Faktoren sind, die die Diffusion altersgerechter Assistenzsysteme hemmen oder f{\"o}rdern.}, subject = {Alter}, language = {de} }