@misc{Singh, author = {Singh, Max Diamond}, title = {European Union MDRs impact on device manufacturers: Reprocessing of surgical invasive devices, critical timeliness and technical documentation requirements under MDR}, series = {The validation of sterile medical devices: sterilization, packaging, biocompatibility, toxicology and reprocessing, Amsterdam, 26.03. - 28.03.2019 [Veranstalter: Nelson Labs ; Sterigenics]}, journal = {The validation of sterile medical devices: sterilization, packaging, biocompatibility, toxicology and reprocessing, Amsterdam, 26.03. - 28.03.2019 [Veranstalter: Nelson Labs ; Sterigenics]}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Challenges to innovate in the medical device industry under the light of the new EU MDR : a notified body perspective}, series = {Intelligent medical devices - the next disruptor in healthcare ; challenges and oppoertunieties: technical, clinical, regulatory and health economics/market access}, journal = {Intelligent medical devices - the next disruptor in healthcare ; challenges and oppoertunieties: technical, clinical, regulatory and health economics/market access}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Zus{\"a}tzliche Anforderungen an Produktdaten und technische Dokumentation durch die MDR}, series = {Medizintechnik Kongress 2018: Effizienz in der Medizinprodukteentwicklung vor dem Hintergrund von MDR und IVDR ; Frankfurt am Main, 08.11.2018, [Veranstalter: Velten Consulting \& ILC Consulting]}, journal = {Medizintechnik Kongress 2018: Effizienz in der Medizinprodukteentwicklung vor dem Hintergrund von MDR und IVDR ; Frankfurt am Main, 08.11.2018, [Veranstalter: Velten Consulting \& ILC Consulting]}, language = {de} } @misc{Singh, author = {Singh, Max Diamond}, title = {EU-MDR from a Notified Body Perspective - aktuelle Situation hinsichtlich der Anforderungen zum Lieferantenmanagement}, language = {de} } @misc{Singh, author = {Singh, Max Diamond}, title = {EU Medical Device Regulation: Top Challenges of Orthopedic Manufacturers}, series = {OMTEC 2019 : 15th Annual Orthopedic Manufacturing \& Technology Exposition and Conference, Chicago, 11.6.2019}, journal = {OMTEC 2019 : 15th Annual Orthopedic Manufacturing \& Technology Exposition and Conference, Chicago, 11.6.2019}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Conformity Assessment Procedure MDR}, series = {MDR Training: Person Responsible for Regulatory Compliance Course, 24.-25.02.2020, Tel Aviv, Obelis Academy}, journal = {MDR Training: Person Responsible for Regulatory Compliance Course, 24.-25.02.2020, Tel Aviv, Obelis Academy}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Managing Innovation from the Notified Body Perspective - Understanding the 3 C's of EU Regulations to Ensure Product Compliance: Changes, Challenges and Contributions}, series = {3rd annual european medical device and diagnostic product development and management meeting, 12-13 February 2019, Brussels}, journal = {3rd annual european medical device and diagnostic product development and management meeting, 12-13 February 2019, Brussels}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Notified body feedback: PSUR Forms. Post Market Surveillance \& Vigilance}, series = {MedTech Summit 2020: EU MDR \& IVDR: the end is in sight, Dublin/virtual, 20.-26.06.2020}, journal = {MedTech Summit 2020: EU MDR \& IVDR: the end is in sight, Dublin/virtual, 20.-26.06.2020}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {MDR - Die neuen rechtlichen Bedingungen f{\"u}r H{\"a}ndler und Hersteller: aus der Sicht einer benannten Stelle}, series = {MEGRA Jahrestagung. - Wien, 18.05.2020 [Veranstalter: Mitteleurop{\"a}ische Gesellschaft f{\"u}r Regulatory Affairs]}, journal = {MEGRA Jahrestagung. - Wien, 18.05.2020 [Veranstalter: Mitteleurop{\"a}ische Gesellschaft f{\"u}r Regulatory Affairs]}, language = {de} } @misc{Singh, author = {Singh, Max Diamond}, title = {Innovation challenges for orthopedic device manufacturers under the new EU MDR}, series = {ORS (Orthopaedic Research Society) Annual Meeting. - Phoenix, Arizona, 08. - 11.02.2020}, journal = {ORS (Orthopaedic Research Society) Annual Meeting. - Phoenix, Arizona, 08. - 11.02.2020}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {KARL STORZ Navigation Panel Unit - Navigation for ENT surgery}, series = {FESS 2010 : International Workshop on FESS ; Lectures \& Live Surgery. - Royal Pearl Hospital, Tiruchirappalli (Indien), 10.-11.04.2010}, journal = {FESS 2010 : International Workshop on FESS ; Lectures \& Live Surgery. - Royal Pearl Hospital, Tiruchirappalli (Indien), 10.-11.04.2010}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Medical Device Regulation}, series = {Forum MedTech Pharma: Start-ups in der Medizintechnik: Besonderheiten und Fallbeispiele, M{\"u}nchen, 17.7.2019}, journal = {Forum MedTech Pharma: Start-ups in der Medizintechnik: Besonderheiten und Fallbeispiele, M{\"u}nchen, 17.7.2019}, language = {de} } @misc{Singh, author = {Singh, Max Diamond}, title = {Market Access for Devices under MDD and MDR: Obligations for Manufacturers}, series = {OSMA - Orthopedic Surgical Manufacturers Association, Winter Educational Program - virtual}, journal = {OSMA - Orthopedic Surgical Manufacturers Association, Winter Educational Program - virtual}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Innovationsmanagement}, language = {de} } @misc{Singh, author = {Singh, Max Diamond}, title = {General Overview of the Medical Device Regulation}, series = {MDR-Roadshow - T{\"U}V S{\"U}D MHS, India}, journal = {MDR-Roadshow - T{\"U}V S{\"U}D MHS, India}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Stakeholder view on Post Market Surveillance under the EU MDR: Timelines, Compliance and Requirements ; Post Market Surveillance \& Vigilance}, series = {MedTech summit 2020: EU MDR \& IVDR: the end ist in sight, 22.-26.06.2020, Dublin/virtual}, journal = {MedTech summit 2020: EU MDR \& IVDR: the end ist in sight, 22.-26.06.2020, Dublin/virtual}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Quality in Medical Device Innovation for Start-ups, SME, and large enterprises through the new Medical Device Regulation}, series = {3rd European QA Conference, Dublin, 06. - 08.11.2019}, journal = {3rd European QA Conference, Dublin, 06. - 08.11.2019}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Technical Documentation MDR / IVDR, including the Declaration of Conformity}, series = {MDR Training: Person Responsible for Regulatory Compliance, 24.-25.02.2020, Tel Aviv, Obelis Academy}, journal = {MDR Training: Person Responsible for Regulatory Compliance, 24.-25.02.2020, Tel Aviv, Obelis Academy}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Notified Body Viewpoint : Preparing for MDR/IVDR}, series = {MDR/IVDR - Status Report from Stakeholders. Where are we now in November 2018? - Bern, 22.11.2018 - [Veranstalter: RAPS : Regulatory Affairs Professionals Society]}, journal = {MDR/IVDR - Status Report from Stakeholders. Where are we now in November 2018? - Bern, 22.11.2018 - [Veranstalter: RAPS : Regulatory Affairs Professionals Society]}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Reclassification of Orthopedic Devices per the Medical Device Regulation}, series = {OSMA Winter Educational Program, St. Petersburg/USA, 2019. - [Veranstalter: Orthopedic Surgical Manufacturers Association (OSMA)]}, journal = {OSMA Winter Educational Program, St. Petersburg/USA, 2019. - [Veranstalter: Orthopedic Surgical Manufacturers Association (OSMA)]}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Strategies to Navigate to the EU MDR and Clinical Requirements}, series = {Regulatory Affairs Professionals Society (RAPS): Session 1 - Tampa, Florida 2019}, journal = {Regulatory Affairs Professionals Society (RAPS): Session 1 - Tampa, Florida 2019}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Herausforderungen der Medizinprodukteindustrie bei der Internationalisierung}, series = {Studienwoche an der HNU (Hochschule Neu-Ulm) 2020}, journal = {Studienwoche an der HNU (Hochschule Neu-Ulm) 2020}, language = {de} } @misc{Singh, author = {Singh, Max Diamond}, title = {Technical Aspects for Navigated Sinus Surgery}, series = {4th Workshop on Endoscopic Surgery of the Maxillary Sinus and Navigation, T{\"u}bingen University Hospital, 2009}, journal = {4th Workshop on Endoscopic Surgery of the Maxillary Sinus and Navigation, T{\"u}bingen University Hospital, 2009}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Overview of the Medical Device Regulation (MDR)}, language = {en} } @article{Singh, author = {Singh, Max Diamond}, title = {Orthopedic Medical Devices Under The Scope of The EU MDR}, series = {MedTech Outlook}, journal = {MedTech Outlook}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Joint NB-Position Paper on Spinal Classification per the MDR}, language = {en} } @phdthesis{Singh, author = {Singh, Max Diamond}, title = {Aspects of the Dynamics of Spine Surgery Technologies: Assessing the Reality of Innovation and Entrepreneurship in the U.S. Medical Device Industry}, publisher = {Karlsruhe Institute of Technology}, address = {Karlsruhe}, pages = {xix, 254 S.}, language = {en} } @incollection{Singh, author = {Singh, Max Diamond}, title = {Produktmanagement in der Medizintechnik}, series = {Medizinprodukte Management}, booktitle = {Medizinprodukte Management}, editor = {Schwegel, Philipp and Da-Cruz, Patrick and Hemel, Ulrich and Oberender, Peter}, publisher = {PCO-Verlag}, address = {Bayreuth}, isbn = {978-3-941678-47-7}, pages = {148 -- 161}, abstract = {Das Management in der Medizinprodukteindustrie steht vor vielf{\"a}ltigen Herausforderungen. So sinken einerseits die Produktpreise, anderseits wird auch f{\"u}r die kommenden Jahre in vielen Segmenten ein Mengenwachstum erwartet. Dies stellt die internen Prozesse, vom Customer Service bis hin zur Forschung \& Entwicklung, auf den Pr{\"u}fstand. Die Entscheidungstr{\"a}ger auf Kundenseite ver{\"a}ndern sich, weg vom Produktanwender hin zu professionellen Einkaufsgemeinschaften mit immer gr{\"o}ßerer Verhandlungsmacht. Der hohe Internationalisierungsgrad der Unternehmen f{\"u}hrt zu einer steigenden Komplexit{\"a}t bei der Implementierung von Marketing-, Vertriebs- und Produktentwicklungsstrategien auf L{\"a}nderebene. Dar{\"u}ber hinaus werden zunehmend neue Gesch{\"a}ftsmodelle mit hohem Dienstleistungsanteil entwickelt, die mit der traditionellen Lieferantenrolle wenig zu tun haben und von Managern eine neue F{\"a}higkeiten f{\"u}r die Umsetzung erfordern. Die Autoren des Sammelbands greifen die genannten Herausforderungen auf und bieten mit ihren Beitr{\"a}gen L{\"o}sungsans{\"a}tze, die sowohl f{\"u}r Manager im Medizinprodukteunternehmen als auch f{\"u}r Wissenschaftler und Studierende relevant sind.}, language = {de} } @incollection{SinghCapanni, author = {Singh, Max Diamond and Capanni, Felix}, title = {Medizintechnik-Spin-offs aus der Hochschule - Ein Prozessbeispiel}, series = {Entrepreneurship im Gesundheitswesen II}, booktitle = {Entrepreneurship im Gesundheitswesen II}, editor = {Pfannstiel Mario A., and Da-Cruz, Patrick and Rasche, Christoph}, publisher = {Springer Gabler}, address = {Wiesbaden}, isbn = {978-3-658-14781-5}, abstract = {Die Aufmerksamkeit f{\"u}r Unternehmensgr{\"u}ndungen hat in den letzten Jahren extrem zugenommen. Grunds{\"a}tzlich muss ein Start-up in einem kompetitiven Umfeld erfolgreich sein, um bestehen zu k{\"o}nnen. Der Weg dorthin wird maßgeblich beeinflusst durch Planung und finanzielle Ressourcen, die die Gr{\"u}nder bereitstellen m{\"u}ssen. In der Medizinprodukteindustrie kommen zus{\"a}tzlich große H{\"u}rden hinzu, die u. a. einen kurzen Produktlebenszyklus, lange Projektlaufzeiten, aufwendige klinische Studien und aktuell neue gesetzliche Verordnungen betreffen. Dieser Beitrag konzentriert sich zun{\"a}chst auf m{\"o}gliche F{\"o}rdermittel und Beratung von Start-up-Projekten aus dem Hochschulbereich. Aus einer Analyse derzeit existierender Gr{\"u}nderwettbewerbe im Hinblick auf das Gesundheitswesen werden dem Leser entsprechende Adressen zum Einwerben von F{\"o}rdermitteln geliefert. Dar{\"u}ber hinaus wird ein Pilot-Prozess vorgestellt, wie eine Ausgr{\"u}ndungsberatung an der Hochschule Ulm im Studiengang Medizintechnik derzeit verl{\"a}uft. Dies kann m{\"o}glicherweise ein Ankn{\"u}pfungspunkt f{\"u}r eine zuk{\"u}nftige Institutionalisierung von Spin-off-Vorhaben aus dem Hochschulbereich sein.}, language = {de} } @article{SinghRussTerzidis, author = {Singh, Max Diamond and Russ, Jochen and Terzidis, Orestis}, title = {The Impact of the ObamaCare Excise Tax on Innovation and Entrepreneurship - Early Empirical Findings}, series = {International Journal of Innovation Science}, volume = {7}, journal = {International Journal of Innovation Science}, number = {2}, publisher = {Emerald}, doi = {10.1260/1757-2223.7.2.75}, pages = {75 -- 90}, abstract = {This study addresses aspects of governmental influence on innovation by analyzing the impact of the ObamaCare excise tax on the medical device industry. We initially give an overview of common approaches to measuring innovativeness and entrepreneurship, empirically assess whether existing metrics are suitable for investigating the innovation performance of the U.S. medical device industry, and define a new measure (firm innovation activity) for entrepreneurship. Then we perform a quantitative analysis to explore the impact of the tax. We analyze more than 60,000 product clearances from 1996 to 2013, using the FDA database. We find a significant relationship between product counts and revenues for one segment. Contrary to the present criticism of the excise tax, we find hardly any noteworthy response in either firm innovation activity or number of products launched in the year after the tax was introduced. The 2013 reduction of new product submissions is well within the limits of typical annual fluctuations observed in previous years. This provides a first indication that the excise tax act did not have a strong impact on innovative activities through the present.}, language = {en} } @misc{SinghSchlagintweitReischle2020, author = {Singh, Max Diamond and Schlagintweit, S. and Reischle, G.}, title = {Additive-Manufactured Orthopedic Implants Under MDR}, number = {08.11.20}, year = {2020}, language = {en} } @article{SinghTerzidis, author = {Singh, Max Diamond and Terzidis, O.}, title = {Introducing Innovation Phase Transition}, series = {International Journal of Innovation Science}, volume = {7}, journal = {International Journal of Innovation Science}, number = {4}, publisher = {Emerald}, issn = {1757-2223}, doi = {10.1108/IJIS-07-04-2015-B003}, pages = {249 -- 262}, abstract = {Innovation diffusion points toward how innovations spread into the market after launch. This paper investigates diffusion dynamics at market entry time and proposes a new evolution pattern at the intersection between inventions and innovations. With this in mind, we initially prove that patent filings correlate with new product introductions in the U.S. spine market. Then we test our new theory supposing that certain patent filing threshold numbers accelerate strong economic returns in terms of innovations. We find that firms hitting certain patent filing thresholds significantly increase their product launches in the mentioned market. Moreover, the results seem to indicate that economic returns of inventions may be measured substantially. Thus, this paper suggests a new research area by utilizing our proposed concept about an Innovation Outcome Trigger Value (IOTV). Furthermore, the implications may also be interesting for practitioners, since we empirically prove that inventive activities turn out to be worthwhile, indeed.}, language = {en} } @inproceedings{SpreiterGalibarovDendorferetal., author = {Spreiter, G. and Galibarov, Pavel E. and Dendorfer, Sebastian and Ferguson, Stephen J.}, title = {Influence of kyphosis on spinal loading}, series = {10th International Symposium Computer Methods in Biomechanics and Biomedical Engineering (CMBBE) Meeting, 11. - 14. April 2012, Berlin}, booktitle = {10th International Symposium Computer Methods in Biomechanics and Biomedical Engineering (CMBBE) Meeting, 11. - 14. April 2012, Berlin}, language = {en} } @article{SteigerFoltanPhilippetal., author = {Steiger, Tamara and Foltan, Maik and Philipp, Alois and Mueller, Thomas and Gruber, Michael Andreas and Bredthauer, Andre and Krenkel, Lars and Birkenmaier, Clemens and Lehle, Karla}, title = {Accumulations of von Willebrand factor within ECMO oxygenators: Potential indicator of coagulation abnormalities in critically ill patients?}, series = {Artificial Organs}, volume = {43}, journal = {Artificial Organs}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {1525-1594}, doi = {10.1111/aor.13513}, pages = {1065 -- 1076}, abstract = {Clot formation within membrane oxygenators (MOs) remains a critical problem during extracorporeal membrane oxygenation (ECMO). The composition of the clots-in particular, the presence of von Willebrand factor (vWF)-may be an indicator for prevalent nonphysiological flow conditions, foreign body reactions, or coagulation abnormalities in critically ill patients. Mats of interwoven gas exchange fibers from randomly collected MOs (PLS, Maquet, Rastatt, Germany) of 21 patients were stained with antibodies (anti-vWF and anti-P-selectin) and counterstained with 4 ',6-diamidino-2-phenylindole. The extent of vWF-loading was correlated with patient and technical data. While 12 MOs showed low vWF-loadings, 9 MOs showed high vWF-loading with highest accumulations close to crossing points of adjacent gas fibers. The presence and the extent of vWF-fibers/"cobwebs," leukocytes, platelet-leukocyte aggregates (PLAs), and P-selectin-positive platelet aggregates were independent of the extent of vWF-loading. However, the highly loaded MOs were obtained from patients with a significantly elevated SOFA score, severe thrombocytopenia, and persistent liver dysfunction. The coagulation abnormalities of these critically ill patients may cause an accumulation of the highly thrombogenic and elongated high-molecular-weight vWF multimers in the plasma which will be trapped in the MOs during the ECMO therapy.}, language = {en} } @techreport{SteigerFoltanPhilippetal., type = {Working Paper}, author = {Steiger, Tamara and Foltan, Maik and Philipp, Alois and M{\"u}ller, Thomas and Gruber, Michael Andreas and Bredthauer, Andre and Krenkel, Lars and Birkenmaier, Clemens and Lehle, Karla}, title = {Accumulations of von Willebrand factor within ECMO oxygenators: Potential indicator of coagulation abnormalities in critically ill patients?}, abstract = {Clot formation within membrane oxygenators (MOs) remains a critical problem during extracorporeal membrane oxygenation (ECMO). The composition of the clots—in particular, the presence of von Willebrand factor (vWF)—may be an indicator for prevalent nonphysiological flow conditions, foreign body reactions, or coagulation abnormalities in critically ill patients. Mats of interwoven gas exchange fibers from randomly collected MOs (PLS, Maquet, Rastatt, Germany) of 21 patients were stained with antibodies (anti-vWF and anti-P-selectin) and counterstained with 4′,6-diamidino-2-phenylindole. The extent of vWF-loading was correlated with patient and technical data. While 12 MOs showed low vWF-loadings, 9 MOs showed high vWF-loading with highest accumulations close to crossing points of adjacent gas fibers. The presence and the extent of vWF-fibers/"cobwebs," leukocytes, platelet-leukocyte aggregates (PLAs), and P-selectin-positive platelet aggregates were independent of the extent of vWF-loading. However, the highly loaded MOs were obtained from patients with a significantly elevated SOFA score, severe thrombocytopenia, and persistent liver dysfunction. The coagulation abnormalities of these critically ill patients may cause an accumulation of the highly thrombogenic and elongated high-molecular-weight vWF multimers in the plasma which will be trapped in the MOs during the ECMO therapy.}, language = {en} } @article{StelzerKrenkel, author = {Stelzer, Vera and Krenkel, Lars}, title = {2D numerical investigations derived from a 3D dragonfly wing captured with a high-resolution micro-CT}, series = {Technology and health care : official journal of the European Society for Engineering and Medicine}, volume = {30}, journal = {Technology and health care : official journal of the European Society for Engineering and Medicine}, number = {1}, publisher = {IOS Press}, doi = {10.3233/THC-219010}, pages = {283 -- 289}, abstract = {BACKGROUND: Due to their corrugated profile, dragonfly wings have special aerodynamic characteristics during flying and gliding. OBJECTIVE: The aim of this study was to create a realistic 3D model of a dragonfly wing captured with a high-resolution micro-CT. To represent geometry changes in span and chord length and their aerodynamic effects, numerical investigations are carried out at different wing positions. METHODS: The forewing of a Camacinia gigantea was captured using a micro-CT. After the wing was adapted an error-free 3D model resulted. The wing was cut every 5 mm and 2D numerical analyses were conducted in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, USA). RESULTS: The highest lift coefficient, as well as the highest lift-to-drag ratio, resulted at 0 mm and an angle of attack (AOA) of 5∘. At AOAs of 10∘ or 15∘, the flow around the wing stalled and a K{\´a}rm{\´a}n vortex street behind the wing becomes CONCLUSIONS: The velocity is higher on the upper side of the wing compared to the lower side. The pressure acts vice versa. Due to the recirculation zones that are formed in valleys of the corrugation pattern the wing resembles the form of an airfoil.}, language = {en} } @misc{StelzerRuettenKrenkel, author = {Stelzer, Vera and R{\"u}tten, Markus and Krenkel, Lars}, title = {Numerical Investigation of a 3D Dragonfly Wing Captured with a High-Resolution Micro-CT}, series = {8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2022, 5-9 June 2022, Oslo, Norway}, journal = {8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2022, 5-9 June 2022, Oslo, Norway}, abstract = {The special wing geometry of dragonflies consisting of veins and a membrane forming a corrugated profile leads to special aerodynamic characteristics. To capture the governing flow regimes of a dragonfly wing in detail, a realistic wing model has to be investigated. Therefore, this study aimed to analyze the aerodynamic characteristics of a 3D dragonfly wing reconstructed from a high-resolution micro-CT scan. Afterwards, a spatially high discretized mesh was generated using the mesh generator CENTAUR™ 14.5.0.2 (CentaurSoft, Austin, TX, US) to finally conduct Computational Fluid Dynamics (CFD) investigations in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, US). Due to the small dimensions of the wing membrane, only the vein structure of a Camacinia Gigantea was captured at a micro-CT voxel size of 7 microns. The membrane was adapted and connected to the vein structure using a Boolean union operation. Occurring nconsistencies after combining the veins and the membrane were corrected using an adapted pymesh script [1]. As an initial study, only one quarter of the wing (outer wing section) was investigated to reduce the required computational effort. The resulting hybrid mesh consisting of 10 pseudo-structured prism layers along the wing surface and tetrahedra in the farfield area has 43 mio. nodes. The flow around the wing was considered to be incompressible and laminar using transient calculations. When the flow passes the vein structures, steady vortices occur in the corrugation valleys leading to recirculation zones. Therefore, the dragonfly wing resembles the profile of an airfoil. This leads to comparable lift coefficients of dragonfly wings and airfoil profiles at significantly reduced structural weight. The reconstructed geometry also included naturally occurring triangular prismlike serrated structures at the leading edge of the wing, which have comparable effects to micro vortex generators and might stabilize the recirculation zones. Further work aims to investigate the aerodynamic properties of a complete dragonfly wing during wing flapping.}, language = {en} } @misc{StelzerTauwaldVielsmeieretal., author = {Stelzer, Vera and Tauwald, Sandra Melina and Vielsmeier, Veronika and Cieplik, Fabian and Kandulski, Arne and Schneider-Brachert, Wulf and Wuensch, Olaf and R{\"u}tten, Markus and Krenkel, Lars}, title = {Generation, Distribution, and Contagiousness of Surgical Smoke during Tracheotomies}, series = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, journal = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, address = {G{\"o}ttingen}, organization = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt e.V. / Arbeitsgemeinschaft Str{\"o}mungen mit Abl{\"o}sung, AG STAB}, abstract = {Surgical smoke has been a little discussed topic in the context of the current pandemic. Surgical smoke is generated during the cauterization of tissue with heat-generating devices and consists of 95\% water vapor and 5\% cellular debris in the form of particulate matter. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during tissue electrocautery. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. The higher the power of the high-frequency-device the larger the particles in size and the higher the resulting particle counts. The images taken show the densest smoke at 40W with artificial saliva. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms that the risk arising from surgical smoke should be considered. Furthermore, the experiments will provide the database for further numerical investigations.}, language = {en} } @inproceedings{StelzerTauwaldVielsmeieretal., author = {Stelzer, Vera and Tauwald, Sandra Melina and Vielsmeier, Veronika and Cieplik, Fabian and Kandulski, Arne and Schneider-Brachert, Wulf and W{\"u}nsch, Olaf and R{\"u}tten, Markus and Krenkel, Lars}, title = {Generation and Distribution of Surgical Smoke During High Frequency Electrocauterization}, series = {New Results in Numerical and Experimental Fluid Mechanics XIV. STAB/DGLR Symposium 2022}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics XIV. STAB/DGLR Symposium 2022}, editor = {Dillman, Andreas and Heller, Gerd and Kraemer, Ewald and Wagner, Claus and Weiss, Julien}, publisher = {Springer Nature Switzerland AG}, address = {Cham, Switzerland}, isbn = {978-3-031-40481-8}, doi = {10.1007/978-3-031-40482-5_53}, pages = {559 -- 568}, abstract = {Surgical Smoke is generated during the cauterization of tissue with high-frequency (HF) devices and consists of 95\% water vapor and 5\% cellular debris. When the coagulation tweezers, which are supplied with HF voltage by the HF device, touch tissue, the electric circuit is closed, and smoke is generated by the heat. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during coagulation of tissue. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. With higher power of the HF device, the particles generated are larger in size and the total number of particles generated is also higher. Adding artificial saliva to the tissue shows even higher particle counts. The study by laser light sheet also confirms this. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms considering the risk arising from surgical smoke. Furthermore, the experiments will provide the database for further numerical investigations.}, language = {en} } @inproceedings{StrieglKujatDendorfer, author = {Striegl, B. and Kujat, Richard and Dendorfer, Sebastian}, title = {Quantitative analysis of cartilage surface by confocal laser scanning microscopy}, series = {Biomedizinische Technik}, volume = {59}, booktitle = {Biomedizinische Technik}, number = {s1-A}, doi = {10.1515/bmt-2014-4012}, pages = {24}, language = {en} } @misc{SuessMelznerDendorfer, author = {Suess, Franz and Melzner, Maximilian and Dendorfer, Sebastian}, title = {Towards Ergonomic working - machine learning algorithms and musculoskeletal modeling}, series = {RIM 2021, 13th International Scientific Conference on Manufacturing Engineering, 29 Sept. - 1 Oct 2021, Sarajevo, Bosnia and Herzegovina}, journal = {RIM 2021, 13th International Scientific Conference on Manufacturing Engineering, 29 Sept. - 1 Oct 2021, Sarajevo, Bosnia and Herzegovina}, language = {en} } @inproceedings{SuessMelznerDendorfer, author = {Suess, Franz and Melzner, Maximilian and Dendorfer, Sebastian}, title = {Towards ergonomics working - machine learning algorithms and musculoskeletal modeling}, series = {IOP Conference Series: Materials Science and Engineering}, volume = {1208}, booktitle = {IOP Conference Series: Materials Science and Engineering}, publisher = {IOP Publishing}, issn = {1757-899X}, doi = {10.1088/1757-899X/1208/1/012001}, abstract = {Ergonomic workplaces lead to fewer work-related musculoskeletal disorders and thus fewer sick days. There are various guidelines to help avoid harmful situations. However, these recommendations are often rather crude and often neglect the complex interaction of biomechanical loading and psychological stress. This study investigates whether machine learning algorithms can be used to predict mechanical and stress-related muscle activity for a standardized motion. For this purpose, experimental data were collected for trunk movement with and without additional psychological stress. Two different algorithms (XGBoost and TensorFlow) were used to model the experimental data. XGBoost in particular predicted the results very well. By combining it with musculoskeletal models, the method shown here can be used for workplace analysis but also for the development of real-time feedback systems in real workplace environments.}, language = {en} } @inproceedings{SuessKubowitschRasmussenetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Rasmussen, John and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The influence of cognitive stress on muscle activation and spinal disc load}, series = {European Society of Biomechanics meeting 2019, Vienna, Austria}, booktitle = {European Society of Biomechanics meeting 2019, Vienna, Austria}, language = {en} } @inproceedings{SuessKubowitschVerkerkeetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The influence of stress on spinal loading}, series = {ESEM webconference, Dez. 2017}, booktitle = {ESEM webconference, Dez. 2017}, language = {en} } @inproceedings{SuessKubowitschVerkerkeetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The influence of mental stress on spinal disc loading and muscle activity}, series = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, booktitle = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, language = {en} } @inproceedings{SuessKubowitschVerkerkeetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {Investigation of cognitive stress induced changes in spinal disc forces due to altered kinematics and muscle activity}, series = {World Congress Biomechanics, Dublin, 2018}, booktitle = {World Congress Biomechanics, Dublin, 2018}, language = {en} } @inproceedings{SuessPutzerDendorfer, author = {S{\"u}ß, Franz and Putzer, Michael and Dendorfer, Sebastian}, title = {Numerische und experimentelle Untersuchungen an der Wirbels{\"a}ule}, series = {Forschungssymposium Bad Abbach, Germany, 2015}, booktitle = {Forschungssymposium Bad Abbach, Germany, 2015}, language = {de} } @article{TauwaldErzingerQuadrioetal., author = {Tauwald, Sandra Melina and Erzinger, Florian and Quadrio, Maurizio and R{\"u}tten, Markus and Stemmer, Christian and Krenkel, Lars}, title = {Tomo-PIV in a patient-specific model of human nasal cavities: a methodological approach}, series = {Measurement Science and Technology}, volume = {35}, journal = {Measurement Science and Technology}, number = {5}, publisher = {IOP Publishing}, doi = {10.1088/1361-6501/ad282c}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-70393}, abstract = {The human nose serves as the primary gateway for air entering the respiratory system and plays a vital role in breathing. Nasal breathing difficulties are a significant health concern, leading to substantial healthcare costs for patients. Understanding nasal airflow dynamics is crucial for comprehending respiratory mechanisms. This article presents a detailed study using tomo-Particle Image Velocimetry (PIV) to investigate nasal airflow dynamics while addressing its accuracy. Embedded in the OpenNose project, the work described aims to provide a validation basis for different numerical approaches to upper airway flow. The study includes the manufacturing of a transparent silicone model based on a clinical CT scan, refractive index matching to minimize optical distortions, and precise flow rate adjustments based on physiological breathing cycles. This method allows for spatial high-resolution investigations in different regions of interest within the nasopharynx during various phases of the breathing cycle. The results demonstrate the accuracy of the investigations, enabling detailed analysis of flow structures and gradients. This spatial high-resolution tomo-PIV approach provides valuable insights into the complex flow phenomena occurring during the physiological breathing cycle in the nasopharynx. The study's findings contribute to advancements in non-free-of-sight experimental flow investigation of complex cavities under nearly realistic conditions. Furthermore, reliable and accurate experimental data is crucial for properly validating numerical approaches that compute this patient-specific flow for clinical purposes.}, language = {en} } @misc{TauwaldKrenkel, author = {Tauwald, Sandra Melina and Krenkel, Lars}, title = {Elementary experimental setup for flow visualization in upper human respiratory tract}, series = {25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria}, journal = {25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria}, language = {en} } @article{TauwaldMichelBrandtetal., author = {Tauwald, Sandra Melina and Michel, Johanna and Brandt, Marie and Vielsmeier, Veronika and Stemmer, Christian and Krenkel, Lars}, title = {Experimental studies and mathematical modeling of the viscoelastic rheology of tracheobronchial mucus from respiratory healthy patients}, series = {Multidisciplinary Respiratory Medicine}, volume = {18}, journal = {Multidisciplinary Respiratory Medicine}, number = {1}, publisher = {PAGEPress}, address = {Pavia, Italy}, issn = {2049-6958}, doi = {10.4081/mrm.2023.923}, pages = {12}, abstract = {BACKGROUND: Tracheobronchial mucus plays a crucial role in pulmonary function by providing protection against inhaled pathogens. Due to its composition of water, mucins, and other biomolecules, it has a complex viscoelastic rheological behavior. This interplay of both viscous and elastic properties has not been fully described yet. In this study, we characterize the rheology of human mucus using oscillatory and transient tests. Based on the transient tests, we describe the material behavior of mucus under stress and strain loading by mathematical models. METHODS: Mucus samples were collected from clinically used endotracheal tubes. For rheological characterization, oscillatory amplitude-sweep and frequency-sweep tests, and transient creep-recovery and stress-relaxation tests were performed. The results of the transient test were approximated using the Burgers model, the Weibull distribution, and the six-element Maxwell model. The three-dimensional microstructure of the tracheobronchial mucus was visualized using scanning electron microscope imaging. RESULTS: Amplitude-sweep tests showed storage moduli ranging from 0.1 Pa to 10000 Pa and a median critical strain of 4 \%. In frequency-sweep tests, storage and loss moduli increased with frequency, with the median of the storage modulus ranging from 10 Pa to 30 Pa, and the median of the loss modulus from 5 Pa to 14 Pa. The Burgers model approximates the viscoelastic behavior of tracheobronchial mucus during a constant load of stress appropriately (R2 of 0.99), and the Weibull distribution is suitable to predict the recovery of the sample after the removal of this stress (R2 of 0.99). The approximation of the stress-relaxation test data by a six-element Maxwell model shows a larger fit error (R2 of 0.91). CONCLUSIONS: This study provides a detailed description of all process steps of characterizing the rheology of tracheobronchial mucus, including sample collection, microstructure visualization, and rheological investigation. Based on this characterization, we provide mathematical models of the rheological behavior of tracheobronchial mucus. These can now be used to simulate mucus flow in the respiratory system through numerical approaches.}, language = {en} }