@misc{Weber, author = {Weber, Karsten}, title = {Driverless vehicles and software dependency: sustainability, security, and safety are at stake}, language = {en} } @misc{Weber, author = {Weber, Karsten}, title = {KI und Sterben Just-in-Time}, language = {de} } @misc{Weber, author = {Weber, Karsten}, title = {„Ist da jemand?" - Die Geschichte des Versuchs denkende Maschinen zu bauen}, language = {de} } @misc{Weber, author = {Weber, Karsten}, title = {Social challenges that (might) come from AI}, language = {en} } @article{WeihererEigenbergerEggeretal., author = {Weiherer, Maximilian and Eigenberger, Andreas and Egger, Bernhard and Br{\´e}bant, Vanessa and Prantl, Lukas and Palm, Christoph}, title = {Learning the shape of female breasts: an open-access 3D statistical shape model of the female breast built from 110 breast scans}, series = {The Visual Computer}, volume = {39}, journal = {The Visual Computer}, number = {4}, publisher = {Springer Nature}, doi = {10.1007/s00371-022-02431-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-30506}, pages = {1597 -- 1616}, abstract = {We present the Regensburg Breast Shape Model (RBSM)—a 3D statistical shape model of the female breast built from 110 breast scans acquired in a standing position, and the first publicly available. Together with the model, a fully automated, pairwise surface registration pipeline used to establish dense correspondence among 3D breast scans is introduced. Our method is computationally efficient and requires only four landmarks to guide the registration process. A major challenge when modeling female breasts from surface-only 3D breast scans is the non-separability of breast and thorax. In order to weaken the strong coupling between breast and surrounding areas, we propose to minimize the variance outside the breast region as much as possible. To achieve this goal, a novel concept called breast probability masks (BPMs) is introduced. A BPM assigns probabilities to each point of a 3D breast scan, telling how likely it is that a particular point belongs to the breast area. During registration, we use BPMs to align the template to the target as accurately as possible inside the breast region and only roughly outside. This simple yet effective strategy significantly reduces the unwanted variance outside the breast region, leading to better statistical shape models in which breast shapes are quite well decoupled from the thorax. The RBSM is thus able to produce a variety of different breast shapes as independently as possible from the shape of the thorax. Our systematic experimental evaluation reveals a generalization ability of 0.17 mm and a specificity of 2.8 mm. To underline the expressiveness of the proposed model, we finally demonstrate in two showcase applications how the RBSM can be used for surgical outcome simulation and the prediction of a missing breast from the remaining one. Our model is available at https://www.rbsm.re-mic.de/.}, language = {en} } @article{BrebantWeihererNoisseretal., author = {Br{\´e}bant, Vanessa and Weiherer, Maximilian and Noisser, Vivien and Seitz, Stephan and Prantl, Lukas and Eigenberger, Andreas}, title = {Implants Versus Lipograft: Analysis of Long-Term Results Following Congenital Breast Asymmetry Correction}, series = {Aesthetic Plastic Surgery}, volume = {46}, journal = {Aesthetic Plastic Surgery}, publisher = {Springer Nature}, doi = {10.1007/s00266-022-02843-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-32404}, pages = {2228 -- 2236}, abstract = {Aims Congenital breast asymmetry represents a particular challenge to the classic techniques of plastic surgery given the young age of patients at presentation. This study reviews and compares the long-term results of traditional breast augmentation using silicone implants and the more innovative technique of lipografting. Methods To achieve this, we not only captured subjective parameters such as satisfaction with outcome and symmetry, but also objective parameters including breast vol-ume and anthropometric measurements. The objective examination was performed manually and by using the Vectra H2 photogrammetry scanning system. Results Differences between patients undergoing either implant augmentation or lipograft were revealed not to be significant with respect to patient satisfaction with surgical outcome (p= 0.55) and symmetry (p= 0.69). Furthermore, a breast symmetry of 93 \% was reported in both groups. Likewise, no statistically significant volume difference between the left and right breasts was observed in both groups (p\0.41). However, lipograft patients needed on average 2.9 procedures to achieve the desired result, compared with 1.3 for implant augmentation. In contrast, patients treated with implant augmentation may require anumber of implant changes during their lifetime. Conclusion Both methods may be considered for patients presenting with congenital breast asymmetry.}, language = {en} } @article{MaierWeihererHuberetal., author = {Maier, Johannes and Weiherer, Maximilian and Huber, Michaela and Palm, Christoph}, title = {Imitating human soft tissue on basis of a dual-material 3D print using a support-filled metamaterial to provide bimanual haptic for a hand surgery training system}, series = {Quantitative Imaging in Medicine and Surgery}, volume = {9}, journal = {Quantitative Imaging in Medicine and Surgery}, number = {1}, publisher = {AME Publishing Company}, doi = {10.21037/qims.2018.09.17}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-979}, pages = {30 -- 42}, abstract = {Background: Currently, it is common practice to use three-dimensional (3D) printers not only for rapid prototyping in the industry, but also in the medical area to create medical applications for training inexperienced surgeons. In a clinical training simulator for minimally invasive bone drilling to fix hand fractures with Kirschner-wires (K-wires), a 3D-printed hand phantom must not only be geometrically but also haptically correct. Due to a limited view during an operation, surgeons need to perfectly localize underlying risk structures only by feeling of specific bony protrusions of the human hand. Methods: The goal of this experiment is to imitate human soft tissue with its haptic and elasticity for a realistic hand phantom fabrication, using only a dual-material 3D printer and support-material-filled metamaterial between skin and bone. We present our workflow to generate lattice structures between hard bone and soft skin with iterative cube edge (CE) or cube face (CF) unit cells. Cuboid and finger shaped sample prints with and without inner hard bone in different lattice thickness are constructed and 3D printed. Results: The most elastic available rubber-like material is too firm to imitate soft tissue. By reducing the amount of rubber in the inner volume through support material (SUP), objects become significantly softer. Without metamaterial, after disintegration, the SUP can be shifted through the volume and thus the body loses its original shape. Although the CE design increases the elasticity, it cannot restore the fabric form. In contrast to CE, the CF design increases not only the elasticity but also guarantees a local limitation of the SUP. Therefore, the body retains its shape and internal bones remain in its intended place. Various unit cell sizes, lattice thickening and skin thickness regulate the rubber material and SUP ratio. Test prints with higher SUP and lower rubber material percentage appear softer and vice versa. This was confirmed by an expert surgeon evaluation. Subjects adjudged pure rubber-like material as too firm and samples only filled with SUP or lattice structure in CE design as not suitable for imitating tissue. 3D-printed finger samples in CF design were rated as realistic compared to the haptic of human tissue with a good palpable bone structure. Conclusions: We developed a new dual-material 3D print technique to imitate soft tissue of the human hand with its haptic properties. Blowy SUP is trapped within a lattice structure to soften rubber-like 3D print material, which makes it possible to reproduce a realistic replica of human hand soft tissue.}, subject = {Handchirurgie}, language = {en} } @article{MaierWeihererHuberetal., author = {Maier, Johannes and Weiherer, Maximilian and Huber, Michaela and Palm, Christoph}, title = {Optically tracked and 3D printed haptic phantom hand for surgical training system}, series = {Quantitative Imaging in Medicine and Surgery}, volume = {10}, journal = {Quantitative Imaging in Medicine and Surgery}, number = {02}, publisher = {AME Publishing Company}, address = {Hong Kong, China}, doi = {10.21037/qims.2019.12.03}, pages = {340 -- 455}, abstract = {Background: For surgical fixation of bone fractures of the human hand, so-called Kirschner-wires (K-wires) are drilled through bone fragments. Due to the minimally invasive drilling procedures without a view of risk structures like vessels and nerves, a thorough training of young surgeons is necessary. For the development of a virtual reality (VR) based training system, a three-dimensional (3D) printed phantom hand is required. To ensure an intuitive operation, this phantom hand has to be realistic in both, its position relative to the driller as well as in its haptic features. The softest 3D printing material available on the market, however, is too hard to imitate human soft tissue. Therefore, a support-material (SUP) filled metamaterial is used to soften the raw material. Realistic haptic features are important to palpate protrusions of the bone to determine the drilling starting point and angle. An optical real-time tracking is used to transfer position and rotation to the training system. Methods: A metamaterial already developed in previous work is further improved by use of a new unit cell. Thus, the amount of SUP within the volume can be increased and the tissue is softened further. In addition, the human anatomy is transferred to the entire hand model. A subcutaneous fat layer and penetration of air through pores into the volume simulate shiftability of skin layers. For optical tracking, a rotationally symmetrical marker attached to the phantom hand with corresponding reference marker is developed. In order to ensure trouble-free position transmission, various types of marker point applications are tested. Results: Several cuboid and forearm sample prints lead to a final 30 centimeter long hand model. The whole haptic phantom could be printed faultless within about 17 hours. The metamaterial consisting of the new unit cell results in an increased SUP share of 4.32\%. Validated by an expert surgeon study, this allows in combination with a displacement of the uppermost skin layer a good palpability of the bones. Tracking of the hand marker in dodecahedron design works trouble-free in conjunction with a reference marker attached to the worktop of the training system. Conclusions: In this work, an optically tracked and haptically correct phantom hand was developed using dual-material 3D printing, which can be easily integrated into a surgical training system.}, subject = {Handchirurgie}, language = {en} } @article{NoisserEigenbergerWeihereretal., author = {Noisser, Vivien and Eigenberger, Andreas and Weiherer, Maximilian and Seitz, Stephan and Prantl, Lukas and Br{\´e}bant, Vanessa}, title = {Surgery of congenital breast asymmetry - which objective parameter influences the subjective satisfaction with long-term results}, series = {Archives of Gynecology and Obstetrics}, journal = {Archives of Gynecology and Obstetrics}, publisher = {Springer Nature}, doi = {10.1007/s00404-021-06218-0}, pages = {8}, abstract = {Purpose Congenital breast asymmetry is a serious gynecological malformation for affected patients. The condition hits young women in puberty and is associated with socio-esthetic handicap, depression, and psychosexual problems. Surgical treatment is usually early in the patient's lifetime, so a long-term sustainable solution is important. Although postoperative outcome has been evaluated in several studies before, this study is the first to analyze which objective parameters have the greatest influence on subjective satisfaction with long-term results. Methods Thirty-four patients diagnosed with congenital breast asymmetry that underwent either lipofilling or implant therapy between the years of 2008 to 2019 were examined. On average, our collective comprised patients seven years after surgery. Data were mainly gathered through manual measurements, patient-reported outcome measures (Breast Q™), and breast volumetry based on 3D scans (Vectra® H2, Canfield Scientific). Results Among all analyzed parameters, only areolar diameter correlated significantly negatively with the subjective outcome satisfaction of the patient. Regarding the subjective assessment of postoperative satisfaction with similarity of the breasts, again the mean areolar diameter, but also the difference in areolar diameter and breast volume between the right and left breasts correlated significantly negatively. Conclusion Areolar diameter was revealed as being a significant factor influencing subjective long-term satisfaction in breast asymmetry patients. Moreover, 3D volumetry proves to be an effective tool to substantiate subjective patient assessments. Our findings may lead to further improvements to surgical planning and will be expanded in further studies.}, language = {en} } @inproceedings{FranzDreherPrinzenetal., author = {Franz, Daniela and Dreher, Maria and Prinzen, Martin and Teßmann, Matthias and Palm, Christoph and Katzky, Uwe and Perret, Jerome and Hofer, Mathias and Wittenberg, Thomas}, title = {CT-basiertes virtuelles Fr{\"a}sen am Felsenbein}, series = {Bildverarbeitung f{\"u}r die Medizin 2018; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 11. bis 13. M{\"a}rz 2018 in Erlangen}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2018; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 11. bis 13. M{\"a}rz 2018 in Erlangen}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-56537-7}, doi = {10.1007/978-3-662-56537-7_51}, pages = {176 -- 181}, abstract = {Im Rahmen der Entwicklung eines haptisch-visuellen Trainingssystems f{\"u}r das Fr{\"a}sen am Felsenbein werden ein Haptikarm und ein autostereoskopischer 3D-Monitor genutzt, um Chirurgen die virtuelle Manipulation von kn{\"o}chernen Strukturen im Kontext eines sog. Serious Game zu erm{\"o}glichen. Unter anderem sollen Assistenz{\"a}rzte im Rahmen ihrer Ausbildung das Fr{\"a}sen am Felsenbein f{\"u}r das chirurgische Einsetzen eines Cochlea-Implantats {\"u}ben k{\"o}nnen. Die Visualisierung des virtuellen Fr{\"a}sens muss daf{\"u}r in Echtzeit und m{\"o}glichst realistisch modelliert, implementiert und evaluiert werden. Wir verwenden verschiedene Raycasting Methoden mit linearer und Nearest Neighbor Interpolation und vergleichen die visuelle Qualit{\"a}t und die Bildwiederholfrequenzen der Methoden. Alle verglichenen Verfahren sind sind echtzeitf{\"a}hig, unterscheiden sich aber in ihrer visuellen Qualit{\"a}t.}, subject = {Felsenbein}, language = {de} } @inproceedings{MaierHuberKatzkyetal., author = {Maier, Johannes and Huber, Michaela and Katzky, Uwe and Perret, Jerome and Wittenberg, Thomas and Palm, Christoph}, title = {Force-Feedback-assisted Bone Drilling Simulation Based on CT Data}, series = {Bildverarbeitung f{\"u}r die Medizin 2018; Algorithmen - Systeme - Anwendungen; Proceedings des Workshops vom 11. bis 13. M{\"a}rz 2018 in Erlangen}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2018; Algorithmen - Systeme - Anwendungen; Proceedings des Workshops vom 11. bis 13. M{\"a}rz 2018 in Erlangen}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-662-56537-7_78}, pages = {291 -- 296}, abstract = {In order to fix a fracture using minimally invasive surgery approaches, surgeons are drilling complex and tiny bones with a 2 dimensional X-ray as single imaging modality in the operating room. Our novel haptic force-feedback and visual assisted training system will potentially help hand surgeons to learn the drilling procedure in a realistic visual environment. Within the simulation, the collision detection as well as the interaction between virtual drill, bone voxels and surfaces are important. In this work, the chai3d collision detection and force calculation algorithms are combined with a physics engine to simulate the bone drilling process. The chosen Bullet-Physics-Engine provides a stable simulation of rigid bodies, if the collision model of the drill and the tool holder is generated as a compound shape. Three haptic points are added to the K-wire tip for removing single voxels from the bone. For the drilling process three modes are proposed to emulate the different phases of drilling in restricting the movement of a haptic device.}, subject = {Handchirurgie}, language = {en} } @inproceedings{EixelbergerWittenbergPerretetal., author = {Eixelberger, Thomas and Wittenberg, Thomas and Perret, Jerome and Katzky, Uwe and Simon, Martina and Schmitt-R{\"u}th, Stephanie and Hofer, Mathias and Sorge, M. and Jacob, R. and Engel, Felix B. and Gostian, A. and Palm, Christoph and Franz, Daniela}, title = {A haptic model for virtual petrosal bone milling}, series = {17. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer- und Roboterassistierte Chirurgie (CURAC2018), Tagungsband, 2018, Leipzig, 13.-15. September}, volume = {17}, booktitle = {17. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer- und Roboterassistierte Chirurgie (CURAC2018), Tagungsband, 2018, Leipzig, 13.-15. September}, pages = {214 -- 219}, abstract = {Virtual training of bone milling requires realtime and realistic haptics of the interaction between the "virtual mill" and a "virtual bone". We propose an exponential abrasion model between a virtual one and the mill bit and combine it with a coarse representation of the virtual bone and the mill shaft for collision detection using the Bullet Physics Engine. We compare our exponential abrasion model to a widely used linear abrasion model and evaluate it quantitatively and qualitatively. The evaluation results show, that we can provide virtual milling in real-time, with an abrasion behavior similar to that proposed in the literature and with a realistic feeling of five different surgeons.}, subject = {Osteosynthese}, language = {en} } @inproceedings{PalmSchanze, author = {Palm, Christoph and Schanze, Thomas}, title = {Biomedical Image and Signal Computing (BISC 2013)}, series = {58. Jahrestagung der Deutschen Gesellschaft f{\"u}r Medizinische Informatik, Biometrie und Epidemiologie e.V. (GMDS 2013), L{\"u}beck, 01.-05.09.2013}, booktitle = {58. Jahrestagung der Deutschen Gesellschaft f{\"u}r Medizinische Informatik, Biometrie und Epidemiologie e.V. (GMDS 2013), L{\"u}beck, 01.-05.09.2013}, number = {DocAbstr. 324}, publisher = {German Medical Science GMS Publishing House}, address = {D{\"u}sseldorf}, doi = {doi:10.3205/13gmds257}, language = {en} } @article{EbigboMendelProbstetal., author = {Ebigbo, Alanna and Mendel, Robert and Probst, Andreas and Manzeneder, Johannes and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Palm, Christoph and Messmann, Helmut}, title = {Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma}, series = {GuT}, volume = {68}, journal = {GuT}, number = {7}, publisher = {British Society of Gastroenterology}, doi = {10.1136/gutjnl-2018-317573}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-68}, pages = {1143 -- 1145}, abstract = {Computer-aided diagnosis using deep learning (CAD-DL) may be an instrument to improve endoscopic assessment of Barrett's oesophagus (BE) and early oesophageal adenocarcinoma (EAC). Based on still images from two databases, the diagnosis of EAC by CAD-DL reached sensitivities/specificities of 97\%/88\% (Augsburg data) and 92\%/100\% (Medical Image Computing and Computer-Assisted Intervention [MICCAI] data) for white light (WL) images and 94\%/80\% for narrow band images (NBI) (Augsburg data), respectively. Tumour margins delineated by experts into images were detected satisfactorily with a Dice coefficient (D) of 0.72. This could be a first step towards CAD-DL for BE assessment. If developed further, it could become a useful adjunctive tool for patient management.}, subject = {Speiser{\"o}hrenkrebs}, language = {en} } @phdthesis{Maier, author = {Maier, Johannes}, title = {Entwicklung eines Haptisch und Visuell unterst{\"u}tzten Trainingssystems (HaptiVisT) f{\"u}r komplexe Knochenbohrungen in der minimalinvasiven Handchirurgie}, publisher = {Shaker}, address = {D{\"u}ren}, isbn = {978-3-8440-7547-2}, pages = {236}, abstract = {Eine g{\"a}ngige Operationsmethode, um Frakturen der menschlichen Hand nach einem Unfall zu korrigieren, ist eine Osteosynthese mit sogenannten Kirschnerdr{\"a}hten (K-Dr{\"a}hten) zur Stabilisierung von Knochenfragmenten. Die Einf{\"u}hrung dieser langen, d{\"u}nnen und scharfen Dr{\"a}hte durch manuelles Bohren ist eine komplexe minimalinvasive Operation, bei der ein Chirurg nahezu ohne visuelle Orientierung und nur durch eine kleine {\"O}ffnung der Haut des Patienten arbeitet. Als Orientierungshilfe f{\"u}r die optimale Lage der K-Dr{\"a}hte bleibt dem Chirurgen lediglich eine zweidimensionale (2D)-R{\"o}ntgendarstellung und das Ertasten von kn{\"o}chernen Vorspr{\"u}ngen auf der menschlichen Hand, um Verletzungen an Risikostrukturen (Nerven, Gef{\"a}ße usw.), die im Weichteilgewebe der Hand eingebettet sind, zu vermeiden. F{\"u}r eine sichere und fehlerfreie Durchf{\"u}hrung einer K-Draht-Osteosynthese ist deswegen eine gr{\"u}ndliche theoretische und praktische Ausbildung junger Chirurgen notwendig. Da traditionelle Trainingsmethoden zeitaufwendig, kostspielig, ethisch nicht korrekt und unzureichend realistisch sind, wird in dieser Arbeit ein innovativer, auf virtueller Realit{\"a}t (VR) basierender, Haptisch und Visuell unterst{\"u}tzter Trainingssimulator (HaptiVisT) f{\"u}r die Platzierung von K-Dr{\"a}hten entwickelt, der vor allem Handchirurgen mit {\"U}bungs- und Perfektionierungsbedarf dabei unterst{\"u}tzt, das Bohrverfahren in einer realistischen aber virtuellen Umgebung zu erlernen. Beim HaptiVisT-Prototypenaufbau werden reale Patientendaten segmentierter Volumendaten aus einer Computertomographie (CT) und einer Magnetresonanztomographie (MRT) im virtuellen, dreidimensionalen (3D) Raum auf einem 3D-Monitor visualisiert und f{\"u}r eine intuitive bimanuelle Haptik sowohl mit einem Kraftfeedback-Ger{\"a}t f{\"u}r den Bohrprozess und einer 3D-gedruckten und optisch getrackten Phantomhand kombiniert. Die vorliegende Arbeit beschreibt zun{\"a}chst alle verwendeten Hardwareger{\"a}te, die C++-Softwareumgebung, aufgebaut auf Multithreading (gleichzeitige Ausf{\"u}hrung mehrerer Anweisungsfolgen in einem Prozess), und die auf Oberfl{\"a}chen- und Volumenrendering basierte Visualisierung. Die Kollisionsdetektion zwischen Bohrer und Knochen im virtuellen Raum wird in zwei separate Ereignisse unterteilt: Kollisionen zwischen Objekten als Gesamtes (Simulation der Kollision {\"u}ber die gesamte Objektoberfl{\"a}che) und Kollisionen zwischen einer K-Draht-Spitze und dem Knochenvolumen f{\"u}r die Entfernung kleiner Volumenelemente (Voxel). Das Herzst{\"u}ck des Trainingssystems bildet eine echtzeitf{\"a}hige Bohrsimulation, die den gesamten Bohrprozess in eine endliche Anzahl logischer Unterprozesse gliedert und diese Zust{\"a}nde in einen endlichen Zustandsautomaten (FSM, engl.: Finite State Machine) zusammenfasst. Das Kraftfeedback w{\"a}hrend einer Bohrung wird mit sogenannten „Virtual Fixtures" (abstrakten sensorischen Informationen) berechnet und {\"u}ber einen Haptikarm auf den Benutzer {\"u}bertragen. Damit die Simulation der Realit{\"a}t entspricht, wird unter Zuhilfenahme eines experimentellen Aufbaus die reale Bohrgeschwindigkeit durch kortikale Knochen ermittelt. Anschließend werden ein Levelkonzept und alle im System verf{\"u}gbaren Bohrunterst{\"u}tzungswerkzeuge, wie haptische Korridore als Goldstandard oder eine R{\"o}ntgenbildsimulation, vorgestellt. Mit ihnen ist es m{\"o}glich, ausgesuchte Operationsf{\"a}lle in Level unterschiedlicher Schwierigkeit zu unterteilen und den Operationsvorgang qualitativ zu bewerten. Der 3D-Druck einer Phantomhand (realit{\"a}tsnahe Nachbildung einer Patientenhand) mit realistischen haptischen Eigenschaften zum Ertasten von Knochenvorspr{\"u}ngen wird {\"u}ber einen metamaterialbasierten Ansatz (Neuanordnung des Grundmaterials durch eine k{\"u}nstlich angelegte, sich wiederholende Struktur) realisiert, da das aktuell am Markt verf{\"u}gbare 3D-Druckmaterial f{\"u}r den Druck menschlichen Weichteilgewebes zu hart ist. Die Echtzeitverfolgung der Phantomhand beruht auf einem mit einer Stereokamera optisch getrackten Marker in Form eines Dodekaeders (K{\"o}rper mit zw{\"o}lf Fl{\"a}chen). Abschließend wird das HaptiVisT-Gesamtsystem in drei und der 3D-Druck einer Phantomhand in zwei Expertenevaluationen ausf{\"u}hrlich untersucht und ausgewertet. Das HaptiVisT-System versteht sich als notwendiges Komplement f{\"u}r den ersten und weltweit einzigen funktionsf{\"a}higen, kompakten Prototypen f{\"u}r virtuelle K-DrahtOsteosynthesen mit haptischen Kraftfeedback, der in Zukunft Chirurgen in Aus- und Weiterbildung an Kliniken oder Trainingszentren ein risikofreies, zeit- und ortsunabh{\"a}ngiges Training erm{\"o}glicht. Die Kernelemente dieser Arbeit sind: • Stereoskopische 3D-Darstellung von realen Patientendaten. • Bimanuelle Haptik aus haptischen Kraftfeedback des Bohrens verbunden mit einer optisch getrackten, haptisch korrekten und 3D-gedruckten Phantomhand. • Zuverl{\"a}ssige Kollisionsdetektion zwischen virtuellen Objekten als Grundlage f{\"u}r das Kraftfeedback und die Abtragung von Knochen. • Echtzeitf{\"a}hige Bohrsimulation durch Reduzierung des Bohrprozesses auf logische Bohr-Teilprozesse kombiniert mit einer Virtual Fixtures basierten Kraftberechnung. Haptisch korrekte Phantome sind vor allem im medizinischen Training von hoher Relevanz und die Berechnung des Kraftfeedbacks beruht erstmals auf der performanten und stabilen Simulation von Bohr-Teilprozessen unter Verwendung von Virtual Fixtures. Der Prototyp wird von Experten durchgehend positiv bewertet und bietet nach deren Einsch{\"a}tzung einen hohen Mehrwert f{\"u}r das chirurgische Training. Zuk{\"u}nftige Arbeiten k{\"o}nnten den Lerneffekt durch das HaptiVisT-Trainingssystem in stichhaltigen Evaluationen mit jungen Medizinstudenten unter Vorhandensein einer Kontrollgruppe statistisch validieren. Bei Best{\"a}tigung dieses Lerneffekts ist eine Ausgr{\"u}ndung als eigenst{\"a}ndiges Unternehmen und Weiterentwicklung des Prototyps mit Ausweitung auf weitere chirurgische Bereiche wie Knie- oder H{\"u}ftchirurgie denkbar. Unter Zuhilfenahme von automatischer Segmentierung k{\"o}nnten in Zukunft akut zu behandelnde Br{\"u}che abgebildet, vorab einer tats{\"a}chlichen Operation ge{\"u}bt und anschließend komplikationslos unter reduzierter Operationszeit durchgef{\"u}hrt werden.}, language = {de} } @article{WoehlMaierGehmertetal., author = {W{\"o}hl, Rebecca and Maier, Johannes and Gehmert, Sebastian and Palm, Christoph and Riebschl{\"a}ger, Birgit and Nerlich, Michael and Huber, Michaela}, title = {3D Analysis of Osteosyntheses Material using semi-automated CT Segmentation}, series = {BMC Musculoskeletal Disorders}, volume = {19}, journal = {BMC Musculoskeletal Disorders}, publisher = {Springer Nature}, doi = {10.1186/s12891-018-1975-0}, pages = {1 -- 8}, abstract = {Backround Scaphoidectomy and midcarpal fusion can be performed using traditional fixation methods like K-wires, staples, screws or different dorsal (non)locking arthrodesis systems. The aim of this study is to test the Aptus four corner locking plate and to compare the clinical findings to the data revealed by CT scans and semi-automated segmentation. Methods: This is a retrospective review of eleven patients suffering from scapholunate advanced collapse (SLAC) or scaphoid non-union advanced collapse (SNAC) wrist, who received a four corner fusion between August 2011 and July 2014. The clinical evaluation consisted of measuring the range of motion (ROM), strength and pain on a visual analogue scale (VAS). Additionally, the Disabilities of the Arm, Shoulder and Hand (QuickDASH) and the Mayo Wrist Score were assessed. A computerized tomography (CT) of the wrist was obtained six weeks postoperatively. After semi-automated segmentation of the CT scans, the models were post processed and surveyed. Results During the six-month follow-up mean range of motion (ROM) of the operated wrist was 60°, consisting of 30° extension and 30° flexion. While pain levels decreased significantly, 54\% of grip strength and 89\% of pinch strength were preserved compared to the contralateral healthy wrist. Union could be detected in all CT scans of the wrist. While X-ray pictures obtained postoperatively revealed no pathology, two user related technical complications were found through the 3D analysis, which correlated to the clinical outcome. Conclusion Due to semi-automated segmentation and 3D analysis it has been proved that the plate design can keep up to the manufacturers' promises. Over all, this case series confirmed that the plate can compete with the coexisting techniques concerning clinical outcome, union and complication rate.}, subject = {Handchirurgie}, language = {en} } @misc{ScheppachMendelProbstetal., author = {Scheppach, Markus W. and Mendel, Robert and Probst, Andreas and Rauber, David and R{\"u}ckert, Tobias and Meinikheim, Michael and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Real-time detection and delineation of tissue during third-space endoscopy using artificial intelligence (AI)}, series = {Endoscopy}, volume = {55}, journal = {Endoscopy}, number = {S02}, publisher = {Thieme}, doi = {10.1055/s-0043-1765128}, pages = {S53 -- S54}, abstract = {Aims AI has proven great potential in assisting endoscopists in diagnostics, however its role in therapeutic endoscopy remains unclear. Endoscopic submucosal dissection (ESD) is a technically demanding intervention with a slow learning curve and relevant risks like bleeding and perforation. Therefore, we aimed to develop an algorithm for the real-time detection and delineation of relevant structures during third-space endoscopy. Methods 5470 still images from 59 full length videos (47 ESD, 12 POEM) were annotated. 179681 additional unlabeled images were added to the training dataset. Consequently, a DeepLabv3+ neural network architecture was trained with the ECMT semi-supervised algorithm (under review elsewhere). Evaluation of vessel detection was performed on a dataset of 101 standardized video clips from 15 separate third-space endoscopy videos with 200 predefined blood vessels. Results Internal validation yielded an overall mean Dice score of 85\% (68\% for blood vessels, 86\% for submucosal layer, 88\% for muscle layer). On the video test data, the overall vessel detection rate (VDR) was 94\% (96\% for ESD, 74\% for POEM). The median overall vessel detection time (VDT) was 0.32 sec (0.3 sec for ESD, 0.62 sec for POEM). Conclusions Evaluation of the developed algorithm on a video test dataset showed high VDR and quick VDT, especially for ESD. Further research will focus on a possible clinical benefit of the AI application for VDR and VDT during third-space endoscopy.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @inproceedings{FranzKatzkyNeumannetal., author = {Franz, Daniela and Katzky, Uwe and Neumann, Sabine and Perret, Jerome and Hofer, Mathias and Huber, Michaela and Schmitt-R{\"u}th, Stephanie and Haug, Sonja and Weber, Karsten and Prinzen, Martin and Palm, Christoph and Wittenberg, Thomas}, title = {Haptisches Lernen f{\"u}r Cochlea Implantationen}, series = {15. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer- und Roboterassistierte Chirurgie (CURAC2016), Tagungsband, 2016, Bern, 29.09. - 01.10.}, booktitle = {15. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer- und Roboterassistierte Chirurgie (CURAC2016), Tagungsband, 2016, Bern, 29.09. - 01.10.}, pages = {21 -- 26}, abstract = {Die Implantation eines Cochlea Implantates ben{\"o}tigt einen chirurgischen Zugang im Felsenbein und durch die Paukenh{\"o}hle des Patienten. Der Chirurg hat eine eingeschr{\"a}nkte Sicht im Operationsgebiet, die weiterhin viele Risikostrukturen enth{\"a}lt. Um eine Cochlea Implantation sicher und fehlerfrei durchzuf{\"u}hren, ist eine umfangreiche theoretische und praktische (teilweise berufsbegleitende) Fortbildung sowie langj{\"a}hrige Erfahrung notwendig. Unter Nutzung von realen klinischen CT/MRT Daten von Innen- und Mittelohr und der interaktiven Segmentierung der darin abgebildeten Strukturen (Nerven, Cochlea, Geh{\"o}rkn{\"o}chelchen,...) wird im HaptiVisT Projekt ein haptisch-visuelles Trainingssystem f{\"u}r die Implantation von Innen- und Mittelohr-Implantaten realisiert, das als sog. „Serious Game" mit immersiver Didaktik gestaltet wird. Die Evaluierung des Demonstrators hinsichtlich Zweckm{\"a}ßigkeit erfolgt prozessbegleitend und ergebnisorientiert, um m{\"o}gliche technische oder didaktische Fehler vor Fertigstellung des Systems aufzudecken. Drei zeitlich versetzte Evaluationen fokussieren dabei chirurgisch-fachliche, didaktische sowie haptisch-ergonomische Akzeptanzkriterien.}, subject = {Cochlea-Implantat}, language = {de} } @inproceedings{SouzaJrHookPapaetal., author = {Souza Jr., Luis Antonio de and Hook, Christian and Papa, Jo{\~a}o Paulo and Palm, Christoph}, title = {Barrett's Esophagus Analysis Using SURF Features}, series = {Bildverarbeitung f{\"u}r die Medizin 2017; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. M{\"a}rz 2017 in Heidelberg}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2017; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. M{\"a}rz 2017 in Heidelberg}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-662-54345-0_34}, pages = {141 -- 146}, abstract = {The development of adenocarcinoma in Barrett's esophagus is difficult to detect by endoscopic surveillance of patients with signs of dysplasia. Computer assisted diagnosis of endoscopic images (CAD) could therefore be most helpful in the demarcation and classification of neoplastic lesions. In this study we tested the feasibility of a CAD method based on Speeded up Robust Feature Detection (SURF). A given database containing 100 images from 39 patients served as benchmark for feature based classification models. Half of the images had previously been diagnosed by five clinical experts as being "cancerous", the other half as "non-cancerous". Cancerous image regions had been visibly delineated (masked) by the clinicians. SURF features acquired from full images as well as from masked areas were utilized for the supervised training and testing of an SVM classifier. The predictive accuracy of the developed CAD system is illustrated by sensitivity and specificity values. The results based on full image matching where 0.78 (sensitivity) and 0.82 (specificity) were achieved, while the masked region approach generated results of 0.90 and 0.95, respectively.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @inproceedings{MendelEbigboProbstetal., author = {Mendel, Robert and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Palm, Christoph}, title = {Barrett's Esophagus Analysis Using Convolutional Neural Networks}, series = {Bildverarbeitung f{\"u}r die Medizin 2017; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. M{\"a}rz 2017 in Heidelberg}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2017; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. M{\"a}rz 2017 in Heidelberg}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-662-54345-0_23}, pages = {80 -- 85}, abstract = {We propose an automatic approach for early detection of adenocarcinoma in the esophagus. High-definition endoscopic images (50 cancer, 50 Barrett) are partitioned into a dataset containing approximately equal amounts of patches showing cancerous and non-cancerous regions. A deep convolutional neural network is adapted to the data using a transfer learning approach. The final classification of an image is determined by at least one patch, for which the probability being a cancer patch exceeds a given threshold. The model was evaluated with leave one patient out cross-validation. With sensitivity and specificity of 0.94 and 0.88, respectively, our findings improve recently published results on the same image data base considerably. Furthermore, the visualization of the class probabilities of each individual patch indicates, that our approach might be extensible to the segmentation domain.}, subject = {Speiser{\"o}hrenkrebs}, language = {en} } @article{SouzaJrPassosSantanaetal., author = {Souza Jr., Luis Antonio de and Passos, Leandro A. and Santana, Marcos Cleison S. and Mendel, Robert and Rauber, David and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Papa, Jo{\~a}o Paulo and Palm, Christoph}, title = {Layer-selective deep representation to improve esophageal cancer classification}, series = {Medical \& Biological Engineering \& Computing}, volume = {62}, journal = {Medical \& Biological Engineering \& Computing}, publisher = {Springer Nature}, address = {Heidelberg}, doi = {10.1007/s11517-024-03142-8}, pages = {3355 -- 3372}, abstract = {Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis.For this task, the deep learning techniques' black-box nature must somehow be lightened up to clarify its promising results. Hence, we aim to investigate the impact of the ResNet-50 deep convolutional design for Barrett's esophagus and adenocarcinoma classification. For such a task, and aiming at proposing a two-step learning technique, the output of each convolutional layer that composes the ResNet-50 architecture was trained and classified for further definition of layers that would provide more impact in the architecture. We showed that local information and high-dimensional features are essential to improve the classification for our task. Besides, we observed a significant improvement when the most discriminative layers expressed more impact in the training and classification of ResNet-50 for Barrett's esophagus and adenocarcinoma classification, demonstrating that both human knowledge and computational processing may influence the correct learning of such a problem.}, language = {en} } @article{EbigboMendelProbstetal., author = {Ebigbo, Alanna and Mendel, Robert and Probst, Andreas and Meinikheim, Michael and Byrne, Michael F. and Messmann, Helmut and Palm, Christoph}, title = {Multimodal imaging for detection and segmentation of Barrett's esophagus-related neoplasia using artificial intelligence}, series = {Endoscopy}, volume = {54}, journal = {Endoscopy}, number = {10}, edition = {E-Video}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/a-1704-7885}, pages = {1}, abstract = {The early diagnosis of cancer in Barrett's esophagus is crucial for improving the prognosis. However, identifying Barrett's esophagus-related neoplasia (BERN) is challenging, even for experts [1]. Four-quadrant biopsies may improve the detection of neoplasia, but they can be associated with sampling errors. The application of artificial intelligence (AI) to the assessment of Barrett's esophagus could improve the diagnosis of BERN, and this has been demonstrated in both preclinical and clinical studies [2] [3]. In this video demonstration, we show the accurate detection and delineation of BERN in two patients ([Video 1]). In part 1, the AI system detects a mucosal cancer about 20 mm in size and accurately delineates the lesion in both white-light and narrow-band imaging. In part 2, a small island of BERN with high-grade dysplasia is detected and delineated in white-light, narrow-band, and texture and color enhancement imaging. The video shows the results using a transparent overlay of the mucosal cancer in real time as well as a full segmentation preview. Additionally, the optical flow allows for the assessment of endoscope movement, something which is inversely related to the reliability of the AI prediction. We demonstrate that multimodal imaging can be applied to the AI-assisted detection and segmentation of even small focal lesions in real time.}, language = {en} } @article{KolevKirchgessnerHoubenetal., author = {Kolev, Kalin and Kirchgeßner, Norbert and Houben, Sebastian and Csisz{\´a}r, Agnes and Rubner, Wolfgang and Palm, Christoph and Eiben, Bj{\"o}rn and Merkel, Rudolf and Cremers, Daniel}, title = {A variational approach to vesicle membrane reconstruction from fluorescence imaging}, series = {Pattern Recognition}, volume = {44}, journal = {Pattern Recognition}, number = {12}, publisher = {Elsevier}, doi = {10.1016/j.patcog.2011.04.019}, pages = {2944 -- 2958}, abstract = {Biological applications like vesicle membrane analysis involve the precise segmentation of 3D structures in noisy volumetric data, obtained by techniques like magnetic resonance imaging (MRI) or laser scanning microscopy (LSM). Dealing with such data is a challenging task and requires robust and accurate segmentation methods. In this article, we propose a novel energy model for 3D segmentation fusing various cues like regional intensity subdivision, edge alignment and orientation information. The uniqueness of the approach consists in the definition of a new anisotropic regularizer, which accounts for the unbalanced slicing of the measured volume data, and the generalization of an efficient numerical scheme for solving the arising minimization problem, based on linearization and fixed-point iteration. We show how the proposed energy model can be optimized globally by making use of recent continuous convex relaxation techniques. The accuracy and robustness of the presented approach are demonstrated by evaluating it on multiple real data sets and comparing it to alternative segmentation methods based on level sets. Although the proposed model is designed with focus on the particular application at hand, it is general enough to be applied to a variety of different segmentation tasks.}, subject = {Dreidimensionale Bildverarbeitung}, language = {en} }