@inproceedings{SuessKubowitschRasmussenetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Rasmussen, John and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The influence of cognitive stress on muscle activation and spinal disc load}, series = {European Society of Biomechanics meeting 2019, Vienna, Austria}, booktitle = {European Society of Biomechanics meeting 2019, Vienna, Austria}, language = {en} } @inproceedings{SuessKubowitschVerkerkeetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The influence of stress on spinal loading}, series = {ESEM webconference, Dez. 2017}, booktitle = {ESEM webconference, Dez. 2017}, language = {en} } @inproceedings{SuessKubowitschVerkerkeetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The influence of mental stress on spinal disc loading and muscle activity}, series = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, booktitle = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, language = {en} } @inproceedings{SuessKubowitschVerkerkeetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {Investigation of cognitive stress induced changes in spinal disc forces due to altered kinematics and muscle activity}, series = {World Congress Biomechanics, Dublin, 2018}, booktitle = {World Congress Biomechanics, Dublin, 2018}, language = {en} } @inproceedings{SuessPutzerDendorfer, author = {S{\"u}ß, Franz and Putzer, Michael and Dendorfer, Sebastian}, title = {Numerische und experimentelle Untersuchungen an der Wirbels{\"a}ule}, series = {Forschungssymposium Bad Abbach, Germany, 2015}, booktitle = {Forschungssymposium Bad Abbach, Germany, 2015}, language = {de} } @article{TauwaldErzingerQuadrioetal., author = {Tauwald, Sandra Melina and Erzinger, Florian and Quadrio, Maurizio and R{\"u}tten, Markus and Stemmer, Christian and Krenkel, Lars}, title = {Tomo-PIV in a patient-specific model of human nasal cavities: a methodological approach}, series = {Measurement Science and Technology}, volume = {35}, journal = {Measurement Science and Technology}, number = {5}, publisher = {IOP Publishing}, doi = {10.1088/1361-6501/ad282c}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-70393}, abstract = {The human nose serves as the primary gateway for air entering the respiratory system and plays a vital role in breathing. Nasal breathing difficulties are a significant health concern, leading to substantial healthcare costs for patients. Understanding nasal airflow dynamics is crucial for comprehending respiratory mechanisms. This article presents a detailed study using tomo-Particle Image Velocimetry (PIV) to investigate nasal airflow dynamics while addressing its accuracy. Embedded in the OpenNose project, the work described aims to provide a validation basis for different numerical approaches to upper airway flow. The study includes the manufacturing of a transparent silicone model based on a clinical CT scan, refractive index matching to minimize optical distortions, and precise flow rate adjustments based on physiological breathing cycles. This method allows for spatial high-resolution investigations in different regions of interest within the nasopharynx during various phases of the breathing cycle. The results demonstrate the accuracy of the investigations, enabling detailed analysis of flow structures and gradients. This spatial high-resolution tomo-PIV approach provides valuable insights into the complex flow phenomena occurring during the physiological breathing cycle in the nasopharynx. The study's findings contribute to advancements in non-free-of-sight experimental flow investigation of complex cavities under nearly realistic conditions. Furthermore, reliable and accurate experimental data is crucial for properly validating numerical approaches that compute this patient-specific flow for clinical purposes.}, language = {en} } @misc{TauwaldKrenkel, author = {Tauwald, Sandra Melina and Krenkel, Lars}, title = {Elementary experimental setup for flow visualization in upper human respiratory tract}, series = {25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria}, journal = {25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria}, language = {en} } @article{TauwaldMichelBrandtetal., author = {Tauwald, Sandra Melina and Michel, Johanna and Brandt, Marie and Vielsmeier, Veronika and Stemmer, Christian and Krenkel, Lars}, title = {Experimental studies and mathematical modeling of the viscoelastic rheology of tracheobronchial mucus from respiratory healthy patients}, series = {Multidisciplinary Respiratory Medicine}, volume = {18}, journal = {Multidisciplinary Respiratory Medicine}, number = {1}, publisher = {PAGEPress}, address = {Pavia, Italy}, issn = {2049-6958}, doi = {10.4081/mrm.2023.923}, pages = {12}, abstract = {BACKGROUND: Tracheobronchial mucus plays a crucial role in pulmonary function by providing protection against inhaled pathogens. Due to its composition of water, mucins, and other biomolecules, it has a complex viscoelastic rheological behavior. This interplay of both viscous and elastic properties has not been fully described yet. In this study, we characterize the rheology of human mucus using oscillatory and transient tests. Based on the transient tests, we describe the material behavior of mucus under stress and strain loading by mathematical models. METHODS: Mucus samples were collected from clinically used endotracheal tubes. For rheological characterization, oscillatory amplitude-sweep and frequency-sweep tests, and transient creep-recovery and stress-relaxation tests were performed. The results of the transient test were approximated using the Burgers model, the Weibull distribution, and the six-element Maxwell model. The three-dimensional microstructure of the tracheobronchial mucus was visualized using scanning electron microscope imaging. RESULTS: Amplitude-sweep tests showed storage moduli ranging from 0.1 Pa to 10000 Pa and a median critical strain of 4 \%. In frequency-sweep tests, storage and loss moduli increased with frequency, with the median of the storage modulus ranging from 10 Pa to 30 Pa, and the median of the loss modulus from 5 Pa to 14 Pa. The Burgers model approximates the viscoelastic behavior of tracheobronchial mucus during a constant load of stress appropriately (R2 of 0.99), and the Weibull distribution is suitable to predict the recovery of the sample after the removal of this stress (R2 of 0.99). The approximation of the stress-relaxation test data by a six-element Maxwell model shows a larger fit error (R2 of 0.91). CONCLUSIONS: This study provides a detailed description of all process steps of characterizing the rheology of tracheobronchial mucus, including sample collection, microstructure visualization, and rheological investigation. Based on this characterization, we provide mathematical models of the rheological behavior of tracheobronchial mucus. These can now be used to simulate mucus flow in the respiratory system through numerical approaches.}, language = {en} } @misc{TauwaldQuadrioRuettenetal., author = {Tauwald, Sandra Melina and Quadrio, Maurizio and R{\"u}tten, Markus and Stemmer, Christian and Krenkel, Lars}, title = {High Spatial Resolution Tomo-PIV of the Nasopharynx Focussing on the Physiological Breathing Cycle}, series = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, journal = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, address = {G{\"o}ttingen}, organization = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt e.V. / Arbeitsgemeinschaft Str{\"o}mungen mit Abl{\"o}sung, AG STAB}, abstract = {Investigations of complex patient-specific flow in the nasopharynx requires high resolution numerical calculations validated by reliable experiments. When building the validation base and the benchmark of computational fluid dynamics, an experimental setup of the nasal airways was developed. The applied optical measurement technique of tomo-PIV supplies information on the governing flow field in three dimensions. This paper presents tomo-PIV measurements of the highly complex patient-specific geometry of the human trachea. A computertomographic scan of a person's head builds the basis of the experimental silicone model of the nasal airways. An optimised approach for precise refractive index matching avoids optical distortions even in highly complex non-free-of-sight 3D geometries. A linear-motor-driven pump generates breathing scenarios, based on measured breathing cycles. Adjusting of the CCD cameras' double-frame-rate PIV-Δt enables the detailed analysis of flow structures during different cycle phases. Merging regions of interest enables high spatial resolution acquisition of the flow field.}, language = {en} } @inproceedings{TauwaldQuadrioRuettenetal., author = {Tauwald, Sandra Melina and Quadrio, Maurizio and R{\"u}tten, Markus and Stemmer, Christian and Krenkel, Lars}, title = {High Spatial Resolution Tomo-PIV of the Trachea Focussing on the Physiological Breathing Cycle}, series = {New Results in Numerical and Experimental Fluid Mechanics XIV - Contributions to the 23nd STAB/DGLR Symposium}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics XIV - Contributions to the 23nd STAB/DGLR Symposium}, publisher = {Springer}, abstract = {Investigations of complex patient-specific flow in the nasopharynx requires high resolution numerical calculations validated by reliable experiments. When building the validation base and the benchmark of computational fluid dynamics, an experimental setup of the nasal airways was developed. The applied optical measurement technique of tomo-PIV supplies information on the governing flow field in three dimensions. This paper presents tomo-PIV measurements of the highly complex patient-specific geometry of the human trachea. A computertomographic scan of a person's head builds the basis of the experimental silicone model of the nasal airways. An optimised approach for precise refractive index matching avoids optical distortions even in highly complex non-free-of-sight 3D geometries. A linear-motor-driven pump generates breathing scenarios, based on measured breathing cycles. Adjusting of the CCD cameras' double-frame-rate PIV-Δt enables the detailed analysis of flow structures during different cycle phases. Merging regions of interest enables high spatial resolution acquisition of the flow field.}, language = {en} }