@inproceedings{TremmelNaglerKutteretal., author = {Tremmel, Florian and Nagler, Oliver and Kutter, Christoph and Holmer, Rainer}, title = {Smart Cantilever Probe with Integrated Force and Acoustic Emission Sensor}, series = {2023 IEEE SENSORS, Vienna, Austria, 10/29/2023 - 11/1/2023}, booktitle = {2023 IEEE SENSORS, Vienna, Austria, 10/29/2023 - 11/1/2023}, publisher = {IEEE}, isbn = {979-8-3503-0387-2}, doi = {10.1109/SENSORS56945.2023.10325021}, pages = {1 -- 4}, abstract = {Acoustic emission (AE) testing recently found its application in the wafer testing sector of the semiconductor industry. To find out the mechanical robustness of semiconductor devices, contact pads on the chip surface are intentionally overstressed with an indenter tip and the appearing oxide cracks are detected with help of the generated AE signals. This is done in a customized test bench with a patented sensor-indenter system. This paper presents an improved version of the measurement setup that solves certain disadvantages of it and can be used in a standard wafer prober. The main components of the developed sensor system are a strain gauge for contact force measurement and a piezoelectric sensor element for AE signal detection. Both components are integrated on a cantilever beam which has an exchangeable indenter tip at its free end. The cantilever probe is electrically conductive to enable electrical tests via the indenter tip. This smart sensor-cantilever combination (SCC) can be mounted with several adapter components on a carrier plate to place it in a wafer prober. For both sensor elements amplifier circuits are developed to enhance their signal-to-noise ratios (SNRs). A prototype setup is shown together with simulated and experimental results to demonstrate its performance. The mechanical properties of the cantilever, as well as the force sensor and the AE crack signals, already fulfill the requirements for an implementation in a wafer prober. To further improve the sensor resolutions and detection limits, several optimizations regarding the design of the SCC are in progress.}, language = {en} } @unpublished{HeberlWithelmKauletal., author = {Heberl, Michael and Withelm, Christian and Kaul, Anja and Rank, Daniel and Sterner, Michael}, title = {Prospective Life Cycle Assessment of Biological Methanation in a Trickle-Bed Pilot Plant and a Potential Scale-Up}, publisher = {SSRN}, doi = {10.2139/ssrn.4635066}, abstract = {In this study, a pilot-scale trickle-bed reactor for biological methanation and various scale-up scenarios for 2023 and 2050 were investigated using LCA. A best- and worst-case scenario for technology development until 2050 was evolved using cross consistency analysis and morphological field, based on which the data for the ecological models were determined.The results show that the plant scale-up has a very positive effect on the ecological consequences of methanation. In the best-case scenario, the values are a factor of 23-780 lower than those of the actual plant today. A hot-spot analysis showed that especially electrolysis operation has a large impact on total emissions. The final Monte-Carlo simulation shows that the technology is likely to achieve a low GWP with a median of 104.0 kg CO2-eq / MWh CH4.}, language = {en} } @incollection{Rill, author = {Rill, Georg}, title = {Vehicle Dynamics in Real-Time Simulation}, series = {The dynamics of vehicles on roads and on tracks}, booktitle = {The dynamics of vehicles on roads and on tracks}, editor = {Apetaur, Milan}, publisher = {CRC Press}, address = {Boca Raton}, isbn = {9781003210894}, doi = {10.1201/9781003210894-40}, pages = {337 -- 347}, abstract = {This paper presents some ideas on a new concept, named COMPACT (Computer Simulation of Passenger Cars and Trucks). COMPACT was developed for the mathematical description of vehicles in all driving situations. As COMPACT is completely adopted to the particular problems in road vehicle dynamics, it results in a computer code where execution time is minimized. Thus, even real-time application at the Daimler-Benz driving simulator is possible. Previous Chapter Next Chapter}, language = {en} } @unpublished{MeisingerHofrichterBaueretal., author = {Meisinger, Alexander and Hofrichter, Andreas and Bauer, Franz and Sterner, Michael}, title = {Unlocking Potential Energy Partnerships in Europe: a Case Study on the Way to a Franco-German Energy Transition}, publisher = {SSRN}, doi = {10.2139/ssrn.5251699}, pages = {23}, abstract = {Global warming is already causing global destabilization. Geopolitical challenges fuel this instability and highlight the need for trusted energy partnerships to ensure energy security. To limit global warming and increase energy security, it is essential to take joint action on an international and global scale. The European Green Deal contributes to this. However, specific national actions are still needed. This research presents a way forward for a Franco-German energy transition and unlocks the potential of energy partnerships within Europe, using a cost-based, sector-coupled optimization model. Both countries are coupled via an isolated country optimization approach. Thus, the focus is on the development of each national energy system. The results highlight the increase of energy security in line with the European Green Deal. The main pillars of the energy transition are solar energy (32- 33\%), wind energy (25-38\%) and biogenic energy sources (13-27\%). Nuclear power is being phased out in Germany and France. The results show that a Franco-German energy partnership has great potential. Overall, France can cost-effectively cover 25\% of Germany's hydrogen import needs (122 TWh) in 2050. At the same time, France can also benefit from the energy partnership in terms of economic growth and joint action to mitigate climate crisis.}, language = {en} } @article{RomeisKostrovKramarenkoetal., author = {Romeis, Dirk and Kostrov, Sergei A. and Kramarenko, Elena Yu and Stepanov, Gennady V. and Shamonin (Chamonine), Mikhail and Saphiannikova, Marina}, title = {Magnetic-field-induced stress in confined magnetoactive elastomers}, series = {Soft Matter}, volume = {16}, journal = {Soft Matter}, number = {39}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, doi = {10.1039/D0SM01337D}, pages = {9047 -- 9058}, abstract = {We present a theoretical approach for calculating the state of stress induced by a uniform magnetic field in confined magnetoactive elastomers of arbitrary shape. The theory explicitly includes the magnetic field generated by magnetizable spherical inclusions in the sample interior assuming a non-linear magnetization behavior. The initial spatial distribution of particles and its change in an external magnetic field are considered. This is achieved by the introduction of an effective demagnetizing factor where both the sample shape and the material microstructure are taken into account. Theoretical predictions are fitted to the stress data measured using a specifically designed experimental setup. It is shown that the theory enables the quantification of the effect of material microstructure upon introducing a specific microstructural factor and its derivative with respect to the extensional strain in the undeformed state. The experimentally observed differences between isotropic and anisotropic samples, compliant and stiff elastomer matrices are explained.}, language = {en} } @article{SnarskiiShamoninChamonineYuskevichetal., author = {Snarskii, Andrei A. and Shamonin (Chamonine), Mikhail and Yuskevich, Pavel and Savelev, Dmitrii V. and Belyaeva, Inna A.}, title = {Induced anisotropy in composite materials with reconfigurable microstructure: Effective medium model with movable percolation threshold}, series = {Physica A: Statistical Mechanics and its Applications}, volume = {560}, journal = {Physica A: Statistical Mechanics and its Applications}, number = {December}, publisher = {Elsevier}, doi = {10.1016/j.physa.2020.125170}, abstract = {In composite materials, with field-dependent restructuring of the filler material (changes in the mutual arrangement of inclusions), the presence of an external magnetic field induces anisotropy of the dielectric properties, even if the composite is isotropic in the absence of an external field. A modified effective medium approximation is proposed for the calculation of the components of effective permittivity within a class of composites with reconfigurable microstructure, where both phases (the filler and the matrix) are isotropic and the inclusions have spherical shape. The effective physical properties are calculated in the parallel and perpendicular directions to an applied field. The appearance of the anisotropy of the permittivity is simulated by the introduction of two not-equal, possibly variable (field-dependent) percolation thresholds. The implications, of the proposed theoretical approach, are demonstrated for the case of the dielectric properties of magnetoactive elastomers (MAEs). In MAEs with soft polymer matrices, the mutual arrangement of micrometer-sized magnetic inclusions can significantly change in an applied magnetic field. A reasonable agreement between theory and experiment at a measurement frequency of 1 kHz is found, and is improved in comparison to the previous models. The components of the effective permittivity tensor, characterizing the dielectric properties along the direction of the applied magnetic field and in the orthogonal direction, grow with an increasing field. This growth is more pronounced for the permittivity component in the field direction. The possible extensions of the theoretical model and future directions of research are discussed. The presented theoretical approach can be useful for the application-driven development of a number of smart materials, in particular electro- and magnetorheological gels, elastomers and fluids.}, language = {en} } @article{SavelevBelyaevaChashinetal., author = {Savelev, Dmitrii V. and Belyaeva, Inna A. and Chashin, Dmitri V. and Fetisov, Leonid Y. and Romeis, Dirk and Kettl, Wolfgang and Kramarenko, Elena Yu and Saphiannikova, Marina and Stepanov, Gennady V. and Shamonin (Chamonine), Mikhail}, title = {Giant extensional strain of magnetoactive elastomeric cylinders in uniform magnetic fields}, series = {Materials}, volume = {13}, journal = {Materials}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma13153297}, pages = {1 -- 17}, abstract = {Elongations of magnetoactive elastomers (MAEs) under ascending-descending uniform magnetic fields were studied experimentally using a laboratory apparatus specifically designed to measure large extensional strains (up to 20\%) in compliant MAEs. In the literature, such a phenomenon is usually denoted as giant magnetostriction. The synthesized cylindrical MAE samples were based on polydimethylsiloxane matrices filled with micrometer-sized particles of carbonyl iron. The impact of both the macroscopic shape factor of the samples and their magneto-mechanical characteristics were evaluated. For this purpose, the aspect ratio of the MAE cylindrical samples, the concentration of magnetic particles in MAEs and the effective shear modulus were systematically varied. It was shown that the magnetically induced elongation of MAE cylinders in the maximum magnetic field of about 400 kA/m, applied along the cylinder axis, grew with the increasing aspect ratio. The effect of the sample composition is discussed in terms of magnetic filler rearrangements in magnetic fields and the observed experimental tendencies are rationalized by simple theoretical estimates. The obtained results can be used for the design of new smart materials with magnetic-field-controlled deformation properties, e.g., for soft robotics.}, language = {en} } @article{SavelevFetisovChashinetal., author = {Savelev, Dmitrii V. and Fetisov, Leonid Y. and Chashin, Dmitri V. and Fetisov, Yuri K. and Khon, Anastasia and Shamonin (Chamonine), Mikhail}, title = {Effects of ferromagnetic-material thickness on magnetoelectric voltage transformation in a multiferroic heterostructure}, series = {Smart Materials and Structures}, volume = {30}, journal = {Smart Materials and Structures}, number = {6}, publisher = {IOP PUBLISHING}, doi = {10.1088/1361-665X/abf6c0}, abstract = {A magnetoelectric (ME) voltage transformer is fabricated on the basis of a ferromagnetic (FM)-piezoelectric (PE) heterostructure comprising two equally thick laminated layers of an amorphous FM alloy and a piezoceramic lead zirconate-titanate layer sandwiched between them. The structure, placed inside an excitation coil, is electrically poled and magnetized in the direction of the long axis. The primary voltage is applied to the coil and the secondary voltage is measured between the electrodes of the PE material. It is shown for the first time that the change in the total thickness of magnetic layers significantly influences the transformer ' s characteristics. At the largest total thickness of FM layers of 138 mu m, the open-circuit voltage transformation ratio K has a maximum value of about 20, and the power transfer efficiency eta at a matched resistive load of about 20 k omega reaches 45\%. The variation of the control magnetic field in the range of 0-21.6 kA m(-1) makes it possible to change the voltage transformation ratio K from zero to the maximum value. A simple model allows one to calculate the dependence of the characteristics of the ME transformer on the frequency of the primary voltage, thickness of the FM layers, control magnetic field, and the load.}, language = {en} } @article{SavelevBelyaevaChashinetal., author = {Savelev, Dmitrii V. and Belyaeva, Inna A. and Chashin, Dmitri V. and Fetisov, Leonid Y. and Shamonin (Chamonine), Mikhail}, title = {Large Wiedemann effect in a magnetoactive elastomer}, series = {Journal of Magnetism and Magnetic Materials}, volume = {511}, journal = {Journal of Magnetism and Magnetic Materials}, number = {October}, publisher = {Elsevier}, doi = {10.1016/j.jmmm.2020.166969}, abstract = {Large twists of a soft tube (hollow cylinder) in helical magnetic fields are presented for the first time. Such a phenomenon is usually denoted as the Wiedemann effect. The tube is fabricated from a soft magnetoactive elastomer material with the shear modulus of about 56 kPa. The composite material comprises 80 mass\% of micrometer-sized iron particles embedded into a polydimethylsiloxane matrix. The circular magnetic field is generated by an electric current in a straight wire passing through the inner hole of the tube. The maximum value of approximately 350″/cm is observed in a longitudinal magnetic field of a few kA/m overlapped with a circumferential magnetic field of about 1.4 kA/m on the surface of the inner hole. A pronounced hysteresis in the dependence of the Wiedemann effect on the circular magnetic field is found. The ways to enhance the Wiedemann twist in magnetoactive elastomers are discussed. The observed large effect is promising for application in magnetic-field controlled torsional actuators, in particular for soft robotics.}, language = {en} } @article{SavelevFetisovChashinetal., author = {Savelev, Dmitrii V. and Fetisov, Leonid Y. and Chashin, Dmitri V. and Shabin, P. A. and Vyunik, D. A. and Fedulov, Feodor and Kettl, Wolfgang and Shamonin (Chamonine), Mikhail}, title = {Method of Measuring Deformations of Magnetoactive Elastomers under the Action of Magnetic Fields}, series = {Russian Technological Journal}, volume = {7}, journal = {Russian Technological Journal}, number = {4}, doi = {10.32362/2500-316x-2019-7-4-81-91}, pages = {81 -- 91}, language = {ru} }