@techreport{RankHeberlSterner, author = {Rank, Daniel and Heberl, Michael and Sterner, Michael}, title = {Die CO2-Bilanz der OTH [Ostbayerischen Technische Hochschule Regenburg]}, language = {de} } @misc{SternerHeberl, author = {Sterner, Michael and Heberl, Michael}, title = {The ORBIT-Project: Biological methanation in a trickle-bed reactor - key results and next steps}, series = {5th Nuremberg Workshop on Methanation and 2nd Generation, N{\"u}rnberg Friedrich-Alexander-Universit{\"a}t, 28.05.2021}, journal = {5th Nuremberg Workshop on Methanation and 2nd Generation, N{\"u}rnberg Friedrich-Alexander-Universit{\"a}t, 28.05.2021}, organization = {Friedrich-Alexander-Universit{\"a}t Erlangen-N{\"u}rnberg / Lehrstuhl f{\"u}r Energieverfahrenstechnik}, language = {en} } @misc{AltmannGebhard, author = {Altmann, Robert and Gebhard, J{\"u}rgen}, title = {Ph{\"a}nomenologische Untersuchung des Einspritzprozesses eines Injektors aus dem Off-Highway-Segment mit Diesel- und Raps{\"o}lkraftstoff}, series = {16. Internationaler Fachkongress "Kraftstoffe der Zukunft 2019", Berlin}, journal = {16. Internationaler Fachkongress "Kraftstoffe der Zukunft 2019", Berlin}, language = {de} } @incollection{GrabnerGraggerKapelleretal., author = {Grabner, Christian and Gragger, Johannes V. and Kapeller, Hansj{\"o}rg and Haumer, Anton and Kral, Christian}, title = {Sensorless PM-Drive Aspects}, series = {Electronic Engineering and Computing Technology}, booktitle = {Electronic Engineering and Computing Technology}, editor = {Ao, Sio-Iong and Gelman, Len}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-90-481-8775-1}, doi = {10.1007/978-90-481-8776-8_3}, pages = {25 -- 35}, abstract = {The development procedure of permanent magnet drives for sensor less operation beginning from standstill under overload conditions has to consider different design aspects coevally. First, the robust rotor position sensing by test signal enforces a design with a strongly different behavior of the spatial dq-oriented differential inductance values. Therefore, the interior rotor magnet array arrangement is from principle predestinated for the controlled sensor less mode including standstill. Fortunately, in order to reduce costs, the distinct reluctance torque capability of such interior magnet arrangement is additionally used for a significantly increased torque by applying a pre-oriented stator current space vectors within the quasi-steady control.}, language = {en} } @article{GamischEttengruberGadereretal., author = {Gamisch, Bernd and Ettengruber, Stefan and Gaderer, Matthias and Dawoud, Belal}, title = {Dynamic simulation of isothermal and non-isothermal reduction and oxidation reactions of iron oxide for a hydrogen storage process}, series = {Renewable and Sustainable Energy}, volume = {1}, journal = {Renewable and Sustainable Energy}, number = {1}, publisher = {ELSP, International Open Science Platform}, doi = {10.55092/rse20230004}, abstract = {This work aims first to develop a dynamic lumped model for the isothermal reactions of hydrogen/steam with a single iron oxide/iron pellet inside a tubular reactor and to validate the model results against the experimental reaction kinetic data with the help of our STA device. To describe the temporal change in mass, and consequently, the temporal heat of reaction, the shrinking core model, based on the geometrical contracting sphere, is applied. It turned out that, the simulation model can reproduce the experimental, temporal concentration and temperature-dependent conversion rates with a maximum deviation of 4.6\% during the oxidation reactions and 3.1\% during the reduction reactions. In addition, a measured isothermal storage process comprising one reduction and one oxidation phase with a holding phase in between on a single reacting pellet could be reproduced with a maximum absolute deviation in the conversion rate of 1.5\%. Moreover, a lumped, non-isothermal simulation model for a pelletized tubular redox-reactor including 2kg of iron oxide pellets has been established, in which the heat of reaction, heat transfer to the ambient and heat transfer between the solid and gas phases are considered. The temporal courses of the outlet gas concentration as well as the temperatures of the gas stream and the solid material at a constant input gas flow rate and a constant reacting gas inlet concentration but different input gas temperatures are estimated. Because of the endothermic nature of the reduction reaction, the inlet reacting gas temperature shall be kept high to prevent the severe temperature drop in the solid phase and, consequently, the significant reduction of the reaction rate. Contrary to that, the oxidation process requires lower input gas temperatures to avoid the excessive overheating of the reaction mass and, consequently, the sintering of the reacting pellets. Finally, five of the previous reactors have been connected in series to explore the influence of the changing inlet gas temperatures and concentrations on the dynamic performance of each storage mass.}, language = {en} } @article{WalterSchwanzerHagenetal., author = {Walter, Stefanie and Schwanzer, Peter and Hagen, Gunter and Rabl, Hans-Peter and Dietrich, Markus and Moos, Ralf}, title = {Soot Monitoring of Gasoline Particulate Filters Using a Radio-Frequency-Based Sensor}, series = {Sensors}, volume = {23}, journal = {Sensors}, number = {18}, publisher = {MDPI}, issn = {1424-8220}, doi = {10.3390/s23187861}, pages = {1 -- 19}, abstract = {Owing to increasingly stringent emission limits, particulate filters have become mandatory for gasoline-engine vehicles. Monitoring their soot loading is necessary for error-free operation. The state-of-the-art differential pressure sensors suffer from inaccuracies due to small amounts of stored soot combined with exhaust gas conditions that lead to partial regeneration. As an alternative approach, radio-frequency-based (RF) sensors can accurately measure the soot loading, even under these conditions, by detecting soot through its dielectric properties. However, they face a different challenge as their sensitivity may depend on the engine operation conditions during soot formation. In this article, this influence is evaluated in more detail. Various soot samples were generated on an engine test bench. Their dielectric properties were measured using the microwave cavity perturbation (MCP) method and compared with the corresponding sensitivity of the RF sensor determined on a lab test bench. Both showed similar behavior. The values for the soot samples themselves, however, differed significantly from each other. A way to correct for this cross-sensitivity was found in the influence of exhaust gas humidity on the RF sensor, which can be correlated with the engine load. By evaluating this influence during significant humidity changes, such as fuel cuts, it could be used to correct the influence of the engineon the RF sensor.}, language = {en} } @article{RillSchuderer, author = {Rill, Georg and Schuderer, Matthias}, title = {A Second-Order Dynamic Friction Model Compared to Commercial Stick-Slip Models}, series = {Modelling}, volume = {4}, journal = {Modelling}, number = {3}, publisher = {MDPI}, issn = {2673-3951}, doi = {10.3390/modelling4030021}, pages = {366 -- 381}, abstract = {Friction has long been an important issue in multibody dynamics. Static friction models apply appropriate regularization techniques to convert the stick inequality and the non-smooth stick-slip transition of Coulomb's approach into a continuous and smooth function of the sliding velocity. However, a regularized friction force is not able to maintain long-term stick. That is why dynamic friction models were developed in recent decades. The friction force depends herein not only on the sliding velocity but also on internal states. The probably best-known representative, the LuGre friction model, is based on a fictitious bristle but realizes a too-simple approximation. The recently published second-order dynamic friction model describes the dynamics of a fictitious bristle more accurately. It is based on a regularized friction force characteristic, which is continuous and smooth but can maintain long-term stick due to an appropriate shift in the regularization. Its performance is compared here to stick-slip friction models, developed and launched not long ago by commercial multibody software packages. The results obtained by a virtual friction test-bench and by a more practical festoon cable system are very promising. Thus, the second-order dynamic friction model may serve not only as an alternative to the LuGre model but also to commercial stick-slip models.}, language = {en} } @article{RillBauerKirchbeck, author = {Rill, Georg and Bauer, Florian and Kirchbeck, Mathias}, title = {VTT - a virtual test truck for modern simulation tasks}, series = {Vehicle system dynamics}, volume = {59}, journal = {Vehicle system dynamics}, number = {4}, publisher = {Taylor\&Francis}, doi = {10.1080/00423114.2019.1705356}, pages = {635 -- 656}, abstract = {The development of new technologies like advanced driver assistance systems or automated driving requires a flexible simulation environment of sufficient complexity. In general this flexibility is not provided by commercial software packages. This paper presents a three-dimensional and nonlinear hand-made model for heavy commercial vehicles including tractor and trailer as well as tractor and semitrailer combinations that can be used in different simulation environments, as well as in real-time applications. As typical for trucks, the torsional flexibility of the frame and a suspended driver's cabin are taken into account. The design kinematics makes it possible to handle different and quite complex axle suspensions very efficiently. Appropriate force elements are used to model various couplings between tractor and trailer or tractor and semitrailer, respectively. The virtual test truck environment (VTT) coded in ANSI C is extremely portable and can easily be embedded in commercial simulation packages like MATLAB/Simulink. It includes the TMeasy tyre model and offers flexible interfaces to third-party software tools.}, language = {en} } @inproceedings{ArrietaCastroRill, author = {Arrieta Castro, Abel and Rill, Georg}, title = {Kinematic Versus Elasto-Kinematic Model of a Twistbeam Suspension}, series = {Advances in Dynamics of Vehicles on Roads and Tracks II, proceedings of the 27th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2021): August 17-19, 2021, Saint Petersburg, Russia}, booktitle = {Advances in Dynamics of Vehicles on Roads and Tracks II, proceedings of the 27th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2021): August 17-19, 2021, Saint Petersburg, Russia}, editor = {Orlova, Anna and Cole, David}, publisher = {Springer Nature}, doi = {10.1007/978-3-031-07305-2_59}, pages = {505 -- 605}, abstract = {The Twistbeam axle suspension is a cheap and robust layout for rear axles at front wheel driven midsize cars. Appropriate models have to take the elastic deformation of the torsion beam into account. A Finite Element approach requires detailed informations of the material properties and the shape which are usually only available in the final production stage. This paper presents a lumped mass model which can easily be integrated into a multibody vehicle model and can be used in the early stage of development. An approximation by the design kinematics further reduces the complexity of the model and considers only the kinematic properties of the Twistbeam suspension. Simulations using a nonlinear and three-dimensional vehicle model with different maneuvers, such as steady-state cornering, step steer input, and driving straight ahead on random road, demonstrate the performance and, in particular, the difference of the presented Twistbeam suspension models.}, language = {en} } @article{RillBauerTopcagic, author = {Rill, Georg and Bauer, Florian and Topcagic, Edin}, title = {Performance of leaf spring suspended axles in model approaches of different complexities}, series = {Vehicle System Dynamics}, volume = {60}, journal = {Vehicle System Dynamics}, number = {8}, publisher = {Taylor\&Francis}, doi = {10.1080/00423114.2021.1928249}, pages = {2871 -- 2889}, abstract = {Axles with leaf spring suspension systems are still a popular choice in many commercial vehicles. However, leaf springs are not in perfect conformity to standard multibody vehicle models because they combine guidance and suspension in one single element. Combining standard multibody vehicle models with sophisticated finite element leaf spring models results in rather complex and computing time-consuming solutions. Purely kinematic models, defined by lookup tables or the design kinematics approach, cover only some but not all features of the leaf spring suspension. As shown here, the five-link model, which incorporates a quasi-static solution of the leaf spring compliance, provides a very practical model. It is comparatively lean and provides results of sufficient accuracy in the whole application range.}, language = {en} } @inproceedings{BuenteRillRuggaberetal., author = {B{\"u}nte, Tilman and Rill, Georg and Ruggaber, Julian and Tobol{\´a}ř, Jakub}, title = {Modelling and Validation of the TMeasy Tyre Model for Extreme Parking Manoeuvres}, series = {Advances in Dynamics of Vehicles on Roads and Tracks II, Proceedings of the 27th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2021): August 17-19, 2021, Saint Petersburg, Russia}, booktitle = {Advances in Dynamics of Vehicles on Roads and Tracks II, Proceedings of the 27th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2021): August 17-19, 2021, Saint Petersburg, Russia}, editor = {Orlova, Anna and Cole, David}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-07305-2}, doi = {10.1007/978-3-031-07305-2_94}, pages = {1015 -- 1025}, abstract = {The TMeasy is a tyre model suitable for vehicle handling analyses and enables easy parametrisation. Recently, a convenient interface to Modelica was implemented by DLR to support the TMeasy also for vehicle modelling in multi-physical domains. This paper focuses especially on the particular problem of reliable reproduction of the tyre's bore torque which occurs during parking manoeuvres. It outlines the theory behind it, discusses the Modelica interface implementation, and presents the results of parameter identification which were achieved based on real experiments with DLR's research platform ROboMObil.}, language = {en} } @inproceedings{Rill, author = {Rill, Georg}, title = {A Three-Dimensional and Nonlinear Virtual Test Car}, series = {ENOC 2022, book of abstracts, 10th European Nonlinear Dynamics Conference: July 17-22, 2022, Lyon, France}, booktitle = {ENOC 2022, book of abstracts, 10th European Nonlinear Dynamics Conference: July 17-22, 2022, Lyon, France}, address = {Lyon}, pages = {49 -- 58}, abstract = {Virtual testing procedures have become a standard in vehicle dynamics. The increasing complexity of driver assistance sys- tems demand for more and more virtual tests, which are supposed to produce reliable results even in the limit range. As a consequence, simplified vehicle models, like the classical bicycle model or 4-wheel vehicle models, have to be replaced by a fully three-dimensional and nonlinear vehicle model, which also encompasses the details of the suspension systems. This paper presents a passenger car model, where the chassis, the four knuckles, and the four wheels are described by rigid bodies, the suspension system is modeled by the generic design kinematics, and the TMeasy tire model provides the tire forces and torques in all driving situations.}, language = {en} } @inproceedings{RillButzRill, author = {Rill, Daniel and Butz, Christiane and Rill, Georg}, title = {Dynamic Interaction of Heavy Duty Vehicles and Expansion Joints}, series = {Multibody Dynamics 2019, Proceedings of the 9th ECCOMAS Thematic Conference on Multibody Dynamics}, volume = {53}, booktitle = {Multibody Dynamics 2019, Proceedings of the 9th ECCOMAS Thematic Conference on Multibody Dynamics}, editor = {Kecskem{\´e}thy, Andr{\´e}s and Geu Flores, Francisco}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-030-23131-6}, doi = {10.1007/978-3-030-23132-3_56}, pages = {471 -- 478}, abstract = {The "Smart Bridge (Intelligente Br{\"u}cke)" project cluster, initiated by the German Federal Highway Research Institute (Bundesanstalt f{\"u}r Straßenwesen, BASt) and the Federal Ministry of Transport and Digital Infrastructure (BMVI), focuses on "smart" monitoring devices that allow an efficient and economic maintenance management of bridge infrastructures. Among the participating projects, the one presented herein focuses on the development of a smart expansion joint, to assess the traffic parameters on site. This is achieved by measuring velocity and weight of crossing vehicles. In reference measurements, performed with a three-axle truck and a typical tractor semi-trailer combination with five axles in total, it was shown that the interaction between the vehicle and the expansion joint is highly dynamic and depends on several factors. To get more insight into this dynamic problem, a virtual test rig was set up. Although nearly all vehicle parameters had to be estimated, the simulation results conform very well with the measurements and are robust to vehicle parameter variations. In addition, they indicate a significant influence of the expansion joint dynamic to the peak values of the measured wheel loads, in particular on higher driving velocities. By compensating the relevant dynamic effects in the measurements, a "smart" data processing algorithm makes it possible to determine the actual vehicle weights in random traffic with reliability and appropriate accuracy.}, language = {en} } @inproceedings{RillArrietaCastro, author = {Rill, Georg and Arrieta Castro, Abel}, title = {A Novel Approach for Parametrization of Suspension Kinematics}, series = {Advances in Dynamics of Vehicles on Roads and Tracks: Proceedings of the 26th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2019), August 12-16, 2019, Gothenburg, Sweden}, booktitle = {Advances in Dynamics of Vehicles on Roads and Tracks: Proceedings of the 26th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2019), August 12-16, 2019, Gothenburg, Sweden}, editor = {Klomp, Matthijs and Bruzelius, Fredrik and Nielsen, Jens and Hillemyr, Angela}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-030-38076-2}, doi = {10.1007/978-3-030-38077-9_210}, pages = {1848 -- 1857}, abstract = {n the automotive industry, simulations are needed to analyse the dynamics of vehicles and also of its main components and subsystems, e.g. tires, brakes and suspension systems. These simulations are required for an early-stage development and in consequence, they must deliver realistic results. Suspension systems plays a key role in comfort and safety of road vehicles. They usually consist of rigid links and force elements that are arranged with a specific topology. In addition, some of their functionalities are to carry the weight of the car and the passengers, and maintain a correct wheel alignment. In simulations involving suspension systems, lookup-tables are frequently used. They are obtained from a Kinematic and Compliance (KnC) test and then standardized for a specific vehicle simulation software. Nonetheless, lookup-tables require a reasonable number of characteristic points. Additionally, derivatives, interpolation, and extrapolation are not necessarily smooth. This produces results that depend on the interpolation technique and may be inaccurate. In this paper, a novel method called "design kinematics" is proposed. This method can describe the kinematic properties of almost any type of suspension systems. Comparisons with an analytic calculation and a KnC measurement shown that the design kinematics is able to represent the kinematic and compliance properties of suspension systems extremely well and very efficiently.}, language = {en} } @article{Rill, author = {Rill, Georg}, title = {Sophisticated but quite simple contact calculation for handling tire models}, series = {Multibody system dynamics}, volume = {45}, journal = {Multibody system dynamics}, number = {2}, publisher = {Springer Nature}, organization = {SPRINGER}, doi = {10.1007/s11044-018-9629-4}, pages = {131 -- 153}, abstract = {Handling tire models like Pacejka (Tire and Vehicle Dynamics, 3rd edn., Elsevier, Amsterdam, 2012) or TMeasy (Rill in Proc. of the XV Int. Symp. on Dynamic Problems of Mechanics, Buzios, RJ, Brazil, 2013) consider the contact patch as one coherent plane. As a consequence, the irregularities of a rough road profile must be approximated by an appropriate local road plane that serves as an effective road plane in order to calculate the geometric contact point and the corresponding contact velocities. The Pacejka/SWIFT tire model employs a road enveloping model that generates the effective height and slope by elliptical cams. TMeasy just uses four representative road points for that purpose. In addition, TMeasy replaces the geometric contact point by the static contact point and shifts it finally to the dynamic contact point that represents the point where the contact forces are applied. In doing so, a rather sophisticated but still simple contact calculation is possible. Simulations obtained with a virtual tire test rig and fully nonlinear three-dimensional multibody system models of a motor-scooter and a passenger car demonstrate the potential of this contact approach.}, language = {en} } @inproceedings{RillArrietaCastro, author = {Rill, Georg and Arrieta Castro, Abel}, title = {The Influence of Axle Kinematics on Vehicle Dynamics}, series = {Interdisciplinary Applications of Kinematics. Proceedings of the Third International Conference (IAK)}, volume = {71}, booktitle = {Interdisciplinary Applications of Kinematics. Proceedings of the Third International Conference (IAK)}, editor = {Kecskem{\´e}thy, Andr{\´e}s and Geu Flores, Francisco and Carrera, Eliodoro and Elias, Dante A.}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-030-16422-5}, doi = {10.1007/978-3-030-16423-2_2}, pages = {23 -- 31}, abstract = {The automotive industry employs many different kinds of axle suspension systems at modern passenger cars. Important criteria are costs, space requirements, kinematic properties, and compliance attributes. This paper illustrates that in particular the kinematic properties of a suspension system have a significant influence on the dynamics of vehicles. As a consequence, the kinematics of a suspension system must be modeled very precisely and nonlinear. Typical kinematical features of a suspension system are discussed by analyzing the most common double wishbone axle suspension system. The influence of the axle kinematics on vehicle dynamics is finally demonstrated by simulation results generated with a fully nonlinear and three-dimensional multibody vehicle model.}, language = {en} } @inproceedings{Rill, author = {Rill, Georg}, title = {TMeasy 6.0-A handling tire model that incorporates the first two belt eigenmodes}, series = {Proceedings of the XI International Conference on Structural Dynamics (EURODYN 2020): Athens, Greece, 23.11.2020 - 26.11.2020}, booktitle = {Proceedings of the XI International Conference on Structural Dynamics (EURODYN 2020): Athens, Greece, 23.11.2020 - 26.11.2020}, publisher = {EASD Procedia}, doi = {10.47964/1120.9054.18673}, pages = {676 -- 689}, abstract = {TMeasy 6.0, an extension to the standard TMeasy tire model of version 5.3, takes the relevant first two rigid body eigenmodes of the belt into consideration. These modes represent the in plane longitudinal and rotational movements of the belt relative to the rim. The dynamics of the longitudinal force is of higher order then and reproduces the tire wheel vibrations, required for indirect tire-pressure monitoring systems (iTPMS), sufficiently well. A tailored implicit solver, which takes the stiff coupling between the longitudinal force and the belt motions into account, still provides real-time performance in addition. Simulation examples show that a rigid body vehicle model equipped with TMeasy 6.0 makes it possible to investigate second generation indirect tire-pressure monitoring systems.}, language = {en} } @book{RillArrietaCastro, author = {Rill, Georg and Arrieta Castro, Abel}, title = {Road Vehicle Dynamics}, publisher = {CRC Press}, address = {Boca Raton, Fla.}, isbn = {9780429244476}, doi = {10.1201/9780429244476}, abstract = {Road Vehicle Dynamics: Fundamentals and Modeling with MATLAB®, Second Edition combines coverage of vehicle dynamics concepts with MATLAB v9.4 programming routines and results, along with examples and numerous chapter exercises. Improved and updated, the revised text offers new coverage of active safety systems, rear wheel steering, race car suspension systems, airsprings, four-wheel drive, mechatronics, and other topics. Based on the lead author's extensive lectures, classes, and research activities, this unique text provides readers with insights into the computer-based modeling of automobiles and other ground vehicles. Instructor resources, including problem solutions, are available from the publisher.}, subject = {Fahrdynamik}, language = {en} } @incollection{Rill, author = {Rill, Georg}, title = {Multibody Systems and Simulation Techniques}, series = {Vehicle Dynamics of Modern Passenger Cars}, booktitle = {Vehicle Dynamics of Modern Passenger Cars}, editor = {Lugner, Peter}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-319-79007-7}, doi = {10.1007/978-3-319-79008-4_6}, pages = {309 -- 375}, abstract = {This part begins with an introduction to Multibody Systems (MBS). It presents the elements of MBS and discusses different modeling aspects. Then, different methods to generate the equations of motion are presented. Solvers for ordinary differential equations (ODE) as well as differential algebraic equations (DAE) are discussed. Finally, techniques for "online" and "offline" simulations including real-time applications are presented like necessary for car development. Special examples show the connection between simulation and test results.}, language = {en} } @incollection{ArrietaCastroRillWeber, author = {Arrieta Castro, Abel and Rill, Georg and Weber, Hans I.}, title = {Development of a Robust Integrated Control System to Improve the Stability of Road Vehicles}, series = {Multibody Mechatronic Systems}, volume = {54}, booktitle = {Multibody Mechatronic Systems}, editor = {Carvalho, Jo{\~a}o Carlos Mendes and Martins, Daniel and Simoni, Roberto and Simas, Henrique}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-67566-4}, doi = {10.1007/978-3-319-67567-1_48}, pages = {506 -- 516}, abstract = {Nowadays, new technologies are pushing the road vehicle limits further. Promising applications, e.g., self-driving cars, require a suitable control system that can maintain the vehicle's stability in critical scenarios. In most of current cars, the control systems actuates independently, meaning there is not a coordination or data sharing between them. This approach can produce a conflict between these standalone controllers and thus, no improvements on the vehicle's stability are achieved or even a worse scenario can be generated. In order to overcome these problems, an integrated approach is developed in this work. This integration, defined in this work as Integrated Control (IC), is done by an intelligence coordination of all standalone controllers inside the vehicle, i.e., Anti-Lock Braking System (ABS), Electronic Stability Program (ESP) and Four-Wheel Steering System (4WS). The ABS model was built using Fuzzy logic, for which only three rules were necessary to get a good performance. To design the ESP and the 4WS, the simple handling vehicle model was used as a reference behavior. The IC was designed using the hierarchical approach with two layers, i.e., the upper and lower layer. The upper one, observes the side slip angle and depends of its value the upper layer triggers the ESP or the 4WS. Finally, in order to prove the improvements of the IC system over the non-integrated approach, a full-size vehicle model was used to perform simulation in run-off-road and μ-split scenarios.}, language = {en} } @inproceedings{ArrietaCastroChavesRilletal., author = {Arrieta Castro, Abel and Chaves, Rafael B. and Rill, Georg and Weber, Hans I.}, title = {Use of Integrated Control to Enhance the Safety of Vehicles in Run-Off-Road Scenarios}, series = {Proceedings of DINAME 2017 : Selected Papers of the XVII International Symposium on Dynamic Problems of Mechanics}, booktitle = {Proceedings of DINAME 2017 : Selected Papers of the XVII International Symposium on Dynamic Problems of Mechanics}, editor = {Fleury, Agenor de T. and Rade, Domingos A. and Kurka, R. G.}, edition = {1. Auflage}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-91217-2}, issn = {2195-4356}, doi = {10.1007/978-3-319-91217-2_30}, pages = {431 -- 443}, abstract = {In this work, an integrated vehicle control system (IC) is tested in run-off-road scenarios. The integrated approach was employed in order to coordinate vehicle control systems, i.e. the Anti-Lock Brake System (ABS), Four-wheel Steering (4WS) and the Electronic Stability Program (ESP). To perform a run-off-road maneuver, a fuzzy virtual test driver was designed. By receiving the lateral position of an obstacle and the vehicle's relative yaw angle, the virtual test driver is capable of following a reference trajectory. Furthermore, to test the performance of the standalone controllers, i.e. ABS, ESP and 4WS, individual maneuvers are performed using a multibody vehicle model. The vehicle without any coordination between the control systems is used as reference. For the simulation results, it is concluded that the IC improves the vehicle stability and maneuverability in comparison with the non-integrated approach.}, language = {en} } @article{Rill2017, author = {Rill, Georg}, title = {Reducing the cornering resistance by torque vectoring (X International Conference on Structural Dynamics, EURODYN 2017)}, series = {Procedia Engineering}, volume = {199}, journal = {Procedia Engineering}, publisher = {Elsevier}, doi = {10.1016/j.proeng.2017.09.393}, pages = {3284 -- 3289}, year = {2017}, abstract = {Usually, torque vectoring is used to reduce a significant understeer behavior at high speed cornering. Thus, providing larger vehicles with a sportive touch. Even on typical front wheel driven cars torque vectoring control is available now. Torque vectoring is nearly a standard on electric driven vehicles. Complex control and optimization strategies are applied to improve the maneuverability in particular or to enhance the driving behavior and reduce the energy consumption in addition. This paper shows, that a quite simple strategy will enhance the maneuverability and simultaneously reduce the cornering resistance in sharp bends. At first, a case study with a fully non-linear and three-dimensional vehicle model is performed. It turned out that a full drive torque shift to the outer wheels improves the maneuverability and reduces the cornering resistance in addition. This results are verified by an optimization performed with a simpler four-wheeled handling model. Here, the front steering angles and the driving torques at each of the four wheels are considered as free parameters. Minimizing the cornering resistance by taking the equations of motion for the four-wheeled handling model as constraints will deliver an optimal set of parameters then.}, language = {en} } @inproceedings{HacklHirschbergLexetal., author = {Hackl, Andreas and Hirschberg, W. and Lex, C. and Rill, Georg}, title = {Tyre type dependent transient force behaviour by means of a maxwell model}, series = {The Dynamics of Vehicles on Roads and Tracks : Proceedings of the 25th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2017), Rockhampton, Queensland, Australia, 14-18 August 2017}, booktitle = {The Dynamics of Vehicles on Roads and Tracks : Proceedings of the 25th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2017), Rockhampton, Queensland, Australia, 14-18 August 2017}, editor = {Spiryagin, Maksym and Gordon, Timothy and Cole, Colin and McSweeney, Tim}, publisher = {CRC Press}, address = {London}, isbn = {1351057170}, doi = {10.1201/9781315265506}, pages = {157 -- 162}, abstract = {The present papers deals with the usability of an extended Maxwell model to describe the tyre dynamics during transient driving manoeuvres. In the present article, the para-metrisation process of a dynamic tyre model is investigated in a first step, using measurement data of tyre forces from a flat trac tyre test bench, (IABG 2016). Two tyre types of dimensions 255/50 R19 and 175/55 R15 are used. The practical applicability is discussed, considering the measurement procedure and the parameter optimisation process. In a second step, the performance of the dynamic tyre model is validated using measurements of manoeuvres under higher dynamic excitation. As a last step, an outlook is given on further research planned in which the presented model and parametrisation are adapted to a larger frequency range.}, language = {en} } @inproceedings{Rill, author = {Rill, Georg}, title = {Real-Time capable Multibody Model of dual Truck Front Axles}, series = {Proceedings of DINAME 2023 - Selected Papers of the XIX International Symposium on Dynamic Problems of Mechanics, 26 Feb - 03 Mar 2023, Piren{\´o}polis, Brazil}, booktitle = {Proceedings of DINAME 2023 - Selected Papers of the XIX International Symposium on Dynamic Problems of Mechanics, 26 Feb - 03 Mar 2023, Piren{\´o}polis, Brazil}, editor = {Fleury, Agenor de T.}, publisher = {Springer}, abstract = {Dual front steering axles are quite common in multi-axled heavy duty trucks. In standard layouts of such axle combinations, the steer motions of the wheels depend not only on the rotation of the steering wheel but also on the movements of the axles. As a consequence, the model complexity of the steering system should match with the complexity of the suspension model. The development of new technologies like advanced driver assistance systems or autonomous driving can only be accomplished efficiently using extensive simulation methods. Such kind of applications demand for computationally efficient vehicle models. This paper presents a steering system model for dual front axles of heavy duty trucks which supplements the suspension model of the axles. The model takes the torsional compliance of the steering column as well as the stiffness of the tie rods and the coupling rod into account. A quasi-static solution provides a straight forward computation including the partial derivatives required for an efficient implicit solver. The steering system model matches perfectly with comparatively lean, but sufficiently accurate multibody suspension models.}, language = {en} } @techreport{MichaelSternerMareikeJentschUweHolzhammer, author = {Michael Sterner, and Mareike Jentsch, and Uwe Holzhammer,}, title = {Energiewirtschaftliche und {\"o}kologische Bewertung eines Windgas-Angebotes}, publisher = {Fraunhofer Institute for Energy Economics and Energy System Technology}, address = {Kassel}, doi = {10.13140/RG.2.2.25093.68328}, abstract = {In this technical report, (1) the benefits of the new technology for future energy supply are discussed, (2) the climate protection effect of wind gas is discussed, and (3) a reasonable use of wind energy for gas generation is analyzed. In particular, windgas in the heat market is discussed in the utilization cascade of wind energy. The new "power-to-gas" concept opens up completely new possibilities for the integration of renewable energies and for coupling the electricity and gas grids. The Sabatier process, which has been known for 100 years, was first developed for this purpose in 2008 under the leadership of the Center for Solar Energy and Hydrogen Research and Fraunhofer IWES (formerly ISET) with electrolysis to create the "power-to-gas" concept for energy storage. A first pilot plant was built by ZSW Stuttgart on behalf of SolarFuel in 2009. This plant proves the technical feasibility of the new technology. Renewable gas is stored, transported and used as required as control and reserve energy via reconversion, e.g. in combined cycle power plants. In this way, decentrally generated renewable electricity is converted into a CO2 -neutral energy carrier with high energy density. The key advantage of renewable methane is the use of existing infrastructure such as gas grids, gas storage and end-use equipment for the integration of renewable energy. Technologies for natural gas are state of the art and commercially available. Methane also has three times the energy density of hydrogen.}, language = {en} } @techreport{ZacherlWopperMieslingeretal., author = {Zacherl, Florian and Wopper, Christoph and Mieslinger, Johann and Peis, Michael and Rabl, Hans-Peter}, title = {Schlussbericht zum Verbundvorhaben NAMOSYN: Nachhaltige Mobilit{\"a}t durch synthetische Kraftstoffe}, address = {Regensburg}, pages = {156}, abstract = {Im Labor f{\"u}r Verbrennungsmotoren und Abgasnachbehandlung der OTH-Regensburg sollten im Zuge des NAMOSYN-Projektes zwei Vertreter klimaneutraler Kraftstoffe an verschiedenen Systempr{\"u}fst{\"a}nden (Motor-, Einspritzpr{\"u}fstand, optisch zug{\"a}ngliche Einspritzkammer, …) und mit Hilfe von Simulationsmethoden f{\"u}r den Einsatz in bestehenden Verbrennungsmotoren untersucht werden. Synthetische Kraftstoffe aus der Gruppe der Oxymethylenether (OME) stellen eine CO2-neutrale Alternative zu fossilem Dieselkraftstoff dar. F{\"u}r Ottomotoren wurde untersucht, ob der synthetische Kraftstoff DMC/MeFo (Dimethylcarbonat \& Methylformiat) einen Ersatz f{\"u}r Ottokraftstoff darstellen kann, bzw. eine Drop-In-F{\"a}higkeit gegeben ist. Die OTH Regensburg bearbeitete 2 unabh{\"a}ngige Teilvorhaben zur motorischen Testung von synthetischen Kraftstoffen: „FC 1A: Motorische Testung von OME" und „FC 2: Untersuchung von C1-Oxygenaten f{\"u}r Ottomotoren". Die Projektlaufzeit betrug 3,5 Jahre, inkl. kostenneutraler Verl{\"a}ngerung um 6 Monate aufgrund der Corona-Pandemie. Im FC1A "AP2-Nachr{\"u}stung Dieselmotoren" der OTH Regensburg lag der Fokus auf der Erforschung der Potentiale und der Umr{\"u}stung eines Einzylinder-Dieselmotors mit Pumpe-Leitung-D{\"u}se-(PLD)-Einspritzsystem des Projektpartners Motorenfabrik Hatz GmbH und Co. KG f{\"u}r OME-Betrieb. Im AP2.1 wurden umfangreiche Daten gesammelt und Simulationsmodelle des Motors und PLD-Einspritzsystems erstellt und mit Dieselkraftstoff und OME validiert. Nachfolgend wurden Parameterstudien zur Geometrie des Einspritzsystems und der physikalischen Eigenschaften von OME durchgef{\"u}hrt. In AP2.2 und AP2.3 wurden umfangreiche Untersuchungen an einem Motor- und Einspritzsystempr{\"u}fstand mit Diesel und OME durchgef{\"u}hrt und der Steuerger{\"a}tedatensatz f{\"u}r den OME-Betrieb optimiert. Die Ergebnisse zeigen, dass die Umstellung des Kraftstoffs auf OME, insbesondere bei einfachen Motoren mit rudiment{\"a}rer Einspritztechnik und ohne Mittel zur NOx-Reduzierung (keine AGR oder SCR), ein enormes Potenzial zur Steigerung des Wirkungsgrads bei gleichzeitiger Reduzierung aller regulierten Schadstoffe (NOx, 𝑃N, 𝑃M, CO und 𝑉OC) er{\"o}ffnet. Die Ergebnisse und generierten Simulationsmodelle unterst{\"u}tzen eine schnelle Serienentwicklung und Einf{\"u}hrung von OME-Umr{\"u}stl{\"o}sungen. In FC 2 werden die vielversprechenden Kraftstoffe Methylformiat (MeFo) und Dimethylcarbonat (DMC) motorisch getestet. Untersuchungen am Kraftstoffsystem und wichtigen Komponenten dienen als Grundlage f{\"u}r das AP3. Im AP3 wird die Machbarkeit der DMC/MeFo-Verbrennung am Vollmotor demonstriert und die erwarteten Emissionsvorteile gegen{\"u}ber herk{\"o}mmlichen Ottokraftstoffen gezeigt. Abweichend von der urspr{\"u}nglichen Planung werden an der OTH Regensburg Kraftstoffblends aus Benzin und MeFo untersucht, um den Einsatzbereich des Kraftstoffs zu erweitern. In AP5 werden potentielle Mischungsverh{\"a}ltnisse analysiert und die Eigenschaften der ausgew{\"a}hlten Kraftstoffmischungen an einem Einspritzratenpr{\"u}fstand, an der Einspritzkammer und am Vollmotor untersucht. Es werden Einspritzverhalten, Gemischaufbereitung und Abgasemissionen bewertet. Zudem wird eine Kraftstoffmischanlage entwickelt und ein optischer Zugang am Vollmotor erm{\"o}glicht. Eine {\"O}lverd{\"u}nnungsmesstechnik wird eingesetzt, um den Kraftstoffeintrag ins Motor{\"o}l zu untersuchen}, language = {de} } @article{SchuemannMorichKaufholdetal., author = {Sch{\"u}mann, Malte and Morich, J. and Kaufhold, T. and B{\"o}hm, Valter and Zimmermann, Klaus and Odenbach, Stefan}, title = {A mechanical characterisation on multiple timescales of electroconductive magnetorheological elastomers}, series = {Magnetism and Magnetic Materials}, volume = {453}, journal = {Magnetism and Magnetic Materials}, number = {May}, publisher = {Elsevier}, doi = {10.1016/j.jmmm.2018.01.029}, pages = {198 -- 205}, abstract = {Magnetorheological elastomers are a type of smart hybrid material which combines elastic properties of a soft elastomer matrix with magnetic properties of magnetic micro particles. This leads to a material with magnetically controllable mechanical properties of which the magnetorheological effect is the best known. The addition of electroconductive particles to the polymer mix adds electrical properties to the material behaviour. The resulting electrical resistance of the sample can be manipulated by external magnetic fields and mechanical loads. This results in a distinct interplay of mechanical, electrical and magnetic effects with a highly complex time behaviour. In this paper a mechanical characterisation on multiple time scales was conducted to get an insight on the short and long-term electrical and mechanical behaviour of this novel material. The results show a complex resistivity behaviour on several timescales, sensitive to magnetic fields and strain velocity. The observed material exhibits fatigue and relaxation behaviour, whereas the magnetorheological effect appears not to interfere with the piezoresistive properties.}, language = {en} } @inproceedings{KetterlHeinrichReitmeieretal., author = {Ketterl, Hermann and Heinrich, Tobias and Reitmeier, Torsten and Hoelscher, Clemens}, title = {Emissionsabh{\"a}ngige Leistungsregelung f{\"u}r BHKW's}, series = {Tagungsband AALE 2020: Automatisierung und Mensch-Technik-Interaktion, 17. Fachkonferenz, 4. bis 6. M{\"a}rz 2020, Leipzig}, volume = {2020}, booktitle = {Tagungsband AALE 2020: Automatisierung und Mensch-Technik-Interaktion, 17. Fachkonferenz, 4. bis 6. M{\"a}rz 2020, Leipzig}, editor = {J{\"a}kel, Jens and Thiel, Robert}, publisher = {VDE-Verlag}, isbn = {978-3-8007-5180-8}, pages = {7}, language = {de} } @misc{OPUS4-6542, title = {Energieforschung}, edition = {Ausgabe 2023}, publisher = {OTH Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg / Regensburg Center of Energy and Resources (RCER)}, doi = {10.35096/othr/pub-6542}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-65422}, abstract = {{\"U}ber uns Das Regensburg Center of Energy and Resources (RCER) b{\"u}ndelt seit 2012 die Aktivit{\"a}ten der Ostbayerischen Technischen Hochschule Regensburg (OTH Regensburg) und der regionalen Wirtschaftsunternehmen auf dem Strategiefeld „Energie und Ressourcen". Mission: Energieforschung: vernetzen, voranbringen, vermitteln Das RCER f{\"o}rdert die Vernetzung verschiedener Disziplinen der Energieforschung innerhalb der OTH Regensburg und mit externen Partnern (Firmen, F{\"o}rdertr{\"a}gern, Forschungsinstitutionen, {\"o}ffentlichen Einrichtungen). Das RCER ist Ihr Partner beim Voranbringen von Kooperationen und Forschungsvorhaben durch Unterst{\"u}tzung in der Antragsphase, bei der Einwerbung von Projektmitteln und Projektbegleitung im Energiebereich. Das RCER steht f{\"u}r die Vermittlung von Know-how, Basiswissen, aktuellen Fragen und den Technologietransfer rund um das Thema Energie zwischen Wissenschaft, Wirtschaft, Gesellschaft und Politik. Vision Wir sind Ihr erster Ansprechpartner und Motor f{\"u}r innovative Energieforschung. Werte Verl{\"a}sslichkeit, Kompetenz, Verantwortungsbewusstsein.Regional verwurzelt und weltoffen}, language = {de} } @misc{Sterner, author = {Sterner, Michael}, title = {Strom - W{\"a}rme - Verkehr - Industrie: das Zusammenspiel der Sektoren {\"u}ber Power-to-X}, series = {Deutscher Ingenieurtag 2021, D{\"u}sseldorf 20. Mai 2021}, journal = {Deutscher Ingenieurtag 2021, D{\"u}sseldorf 20. Mai 2021}, publisher = {VDI-Verlag}, language = {de} } @article{MikhaeilGadererDawoud, author = {Mikhaeil, Makram and Gaderer, Matthias and Dawoud, Belal}, title = {On the application of adsorber plate heat exchangers in thermally driven chillers}, series = {Applied Thermal Engineering}, volume = {220}, journal = {Applied Thermal Engineering}, publisher = {Elsevier}, doi = {10.1016/j.applthermaleng.2022.119713}, abstract = {The effect of both heat and mass transfer characteristic lengths (HTCL, MTCL) of two different adsorber plate heat exchangers (APHE), for application in an adsorption chiller, on the adsorption and desorption kinetics is investigated. Three representative test frames (TF1-TF3) are prepared to examine small-scale adsorbent samples of the microporous silica gel (Siogel of Oker-Chemie, Germany) applying the volumetric large-temperature-jump methodology at different operating conditions. Based on the obtained kinetic data, an analytical model has been developed to predict the specific cooling power (SCP) and the coefficient of performance (COP) of a single-bed adsorption chiller comprising the studied APHEs. It turned out that, within the tested range of HTCL and MTCL, it can be concluded that, the adsorption kinetics are mainly influenced by the MTCL, while the desorption kinetics are dominated by the HTCL of the adsorbent domain. Applying Siogel as loose pellets inside a newly introduced APHE results in of 423.3 and 182.7 W⋅kg-1, at the evaporator temperatures of 15 °C and 5 °C, respectively. Herein, the condenser and adsorber-end temperatures amount to 30 °C and the desorption-end temperature to 90 °C. The corresponding s amount to 0.50 and 0.40, respectively, which represent quite promising results for further design optimizations.}, language = {en} } @article{FrazzicaPalombaDawoud, author = {Frazzica, Andrea and Palomba, Valeria and Dawoud, Belal}, title = {Thermodynamic Performance of Adsorption Working Pairs for Low-Temperature Waste Heat Upgrading in Industrial Applications}, series = {Applied Sciences}, volume = {11}, journal = {Applied Sciences}, number = {8}, publisher = {MDPI}, doi = {10.3390/app11083389}, abstract = {The present work aims at the thermodynamic analysis of different working pairs in adsorption heat transformers (AdHT) for low-temperature waste heat upgrade in industrial processes. Two different AdHT configurations have been simulated, namely with and without heat recovery between the adsorbent beds. Ten working pairs, employing different adsorbent materials and four different refrigerants, have been compared at varying working boundary conditions. The effects of heat recovery and the presence of a temperature gradient for heat transfer between sinks/sources and the AdHT components have been analyzed. The achieved results demonstrate the possibility of increasing the overall performance when internal heat recovery is implemented. They also highlight the relevant role played by the existing temperature gradient between heat transfer fluids and components, that strongly affect the real operating cycle of the AdHT and thus its expected performance. Both extremely low, i.e., 40-50 degrees C, and low (i.e., 80 degrees C) waste heat source temperatures were investigated at variable ambient temperatures, evaluating the achievable COP and specific energy. The main results demonstrate that optimal performance can be achieved when 40-50 K of temperature difference between waste heat source and ambient temperature are guaranteed. Furthermore, composite sorbents demonstrated to be the most promising adsorbent materials for this application, given their high sorption capacity compared to pure adsorbents, which is reflected in much higher achievable specific energy.}, language = {en} } @article{ThemaWeidlichKauletal., author = {Thema, Martin and Weidlich, Tobias and Kaul, Anja and B{\"o}llmann, Andrea and Huber, Harald and Bellack, Annett and Karl, J{\"u}rgen and Sterner, Michael}, title = {Optimized biological CO2-methanation with a pure culture of thermophilic methanogenic archaea in a trickle-bed reactor}, series = {Bioresource Technology}, journal = {Bioresource Technology}, number = {333}, publisher = {Elsevier}, doi = {10.1016/j.biortech.2021.125135}, abstract = {In this study, a fully automated process converting hydrogen and carbon dioxide to methane in a high temperature trickle-bed reactor was developed from lab scale to field test level. The reactor design and system performance was optimized to yield high methane content in the product gas for direct feed-in to the gas grid. The reaction was catalyzed by a pure culture of Methanothermobacter thermoautotrophicus IM5, which formed a biofilm on ceramic packing elements. During 600 h in continuous and semi-continuous operation in countercurrent flow, the 0.05 m3 reactor produced up to 95.3 \% of methane at a methane production rate of 0.35 mCH43mR-3h-1. Adding nitrogen as carrier gas during startup, foam control and dosing of ammonium and sodium sulfide as nitrogen and sulfur source were important factors for process automation.}, language = {en} } @article{GaertnerRankHeberletal., author = {G{\"a}rtner, Sebastian and Rank, Daniel and Heberl, Michael and Gaderer, Matthias and Dawoud, Belal and Haumer, Anton and Sterner, Michael}, title = {Simulation and Techno-Economic Analysis of a Power-to-Hydrogen Process for Oxyfuel Glass Melting}, series = {Energies}, volume = {14}, journal = {Energies}, number = {24}, publisher = {MDPI}, doi = {10.3390/en14248603}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-22713}, abstract = {As an energy-intensive industry sector, the glass industry is strongly affected by the increasingly stringent climate protection targets. As established combustion-based production systems ensure high process stability and glass quality, an immediate switch to low greenhouse gas emission processes is difficult. To approach these challenges, this work investigates a step-by-step integration of a Power-to-Hydrogen concept into established oxyfuel glass melting processes using a simulation approach. This is complemented by a case study for economic analysis on a selected German glass industry site by simulating the power production of a nearby renewable energy park and subsequent optimization of the power-to-hydrogen plant performance and capacities. The results of this study indicate, that the proposed system can reduce specific carbon dioxide emissions by up to 60\%, while increasing specific energy demand by a maximum of 25\%. Investigations of the impact of altered combustion and furnace properties like adiabatic flame temperature (+25 °C), temperature efficiency (∆ξ = -0.003) and heat capacity flow ratio (∆zHL = -0.009) indicate that pure hydrogen-oxygen combustion has less impact on melting properties than assumed so far. Within the case study, high CO2 abatement costs of 295 €/t CO2-eq. were determined. This is mainly due to the insufficient performance of renewable energy sources. The correlations between process scaling and economic parameters presented in this study show promising potential for further economic optimization of the proposed energy system in the future.}, language = {en} } @article{SchorrZentnerZimmermannetal., author = {Schorr, Philipp and Zentner, Lena and Zimmermann, Klaus and B{\"o}hm, Valter}, title = {Jumping locomotion system based on a multistable tensegrity structure}, series = {Mechanical systems and signal processing}, journal = {Mechanical systems and signal processing}, number = {152}, publisher = {Elsevier}, doi = {10.1016/j.ymssp.2020.107384}, abstract = {All known locomotion principles are limited respective to environmental conditions. Often, the occurrence of obstacles or gaps means the break-off for the operating motion systems. For such circumstances, a controllable jumping locomotion is required to cross these barriers. However, this locomotion demands sophisticated requirements to the actuation. The abrupt actuation is commonly realized by high dynamic actuators or complex mechanisms. In this work, a simple solution utilizing the multistability of a compliant tensegrity structure is described. Therefore, a two-dimensional tensegrity structure featuring four stable equilibria is considered. Based on bifurcation analyses a feasible actuation to control the current equilibrium configuration is derived. Changing between selected equilibrium states enables a great difference in potential energy, which yields a jumping motion of the structure. Based on numerical simulations a suitable actuation strategy is chosen to overcome obstacle and steps by jumping forward or backward, respectively. The theoretical approach is examined experimentally with a prototype of the multistable tensegrity structure. (c) 2020 Elsevier Ltd. All rights reserved. All known locomotion principles are limited respective to environmental conditions. Often, the occurrence of obstacles or gaps means the break-off for the operating motion systems. For such circumstances, a controllable jumping locomotion is required to cross these barriers. However, this locomotion demands sophisticated requirements to the actuation. The abrupt actuation is commonly realized by high dynamic actuators or complex mechanisms. In this work, a simple solution utilizing the multistability of a compliant tensegrity structure is described. Therefore, a two-dimensional tensegrity structure featuring four stable equilibria is considered. Based on bifurcation analyses a feasible actuation to control the current equilibrium configuration is derived. Changing between selected equilibrium states enables a great difference in potential energy, which yields a jumping motion of the structure. Based on numerical simulations a suitable actuation strategy is chosen to overcome obstacle and steps by jumping forward or backward, respectively. The theoretical approach is examined experimentally with a prototype of the multistable tensegrity structure.}, language = {en} } @article{EmbergerAltmannGebhardetal., author = {Emberger, Peter and Altmann, Robert and Gebhard, J{\"u}rgen and Thuneke, Klaus and Winkler, Markus and T{\"o}pfer, Georg and Rabl, Hans-Peter and Remmele, Edgar}, title = {Combustion characteristics of pure rapeseed oil fuel after injection in a constant volume combustion chamber with a non-road mobile machinery engine solenoid injector}, series = {Fuel}, journal = {Fuel}, number = {320}, publisher = {Elsevier}, doi = {10.1016/j.fuel.2022.123979}, abstract = {Pure rapeseed oil fuel (R100) according to standard DIN 51605 is a greenhouse gas saving option for the mobility sector. With its high energy density close to diesel fuel, R100 is suitable to operate non-road mobile machinery with a high power demand and long operating time, where electric drives reach their limits. Advantages are indicated for its use in environmentally sensitive areas like agriculture since R100 is highly biodegradable and non-toxic. However, R100 is characterised by differing physical and chemical properties compared to diesel. The objective of the research is to investigate the differences in the ignition and combustion behaviour of R100 compared to diesel fuel (DF). For this purpose, a constant volume combustion chamber is used, which is equipped with a modern solenoid injector for engines of non-road mobile machinery. The researched injector shows a different hydraulic behaviour when using R100 compared to DF in that the injected fuel mass is lower with R100 than with DF. In combination with the 14 \% by mass lower calorific value, less energy output is determined with R100. When varying the injection pressure, the impact on the ignition delay and combustion behaviour is much higher for R100 than for DF. Specifically, an increase of the injection pressure supports mixture preparation and thus partially compensates the differing physical properties of R100. The results of ignition delay measurements and net heat release analysis are as follows: At low load conditions with low injection pressure as well as a low combustion chamber temperature and pressure, R100 ignites later and shows a further delayed combustion compared to diesel. The opposite is observed for medium and high load conditions, where R100 ignites faster and without delayed combustion in comparison to DF. Thus, an adjustment of the heat release of R100 at the same level as for DF is possible by modifying the injection strategy. The research shows that for an optimised combustion of R100 the injection settings must be adjusted for every operation point separately. The results indicate how the injection parameters should be adjusted for different load conditions to realise a high-quality engine calibration for R100.}, language = {en} } @inproceedings{TremmelNaglerKutteretal., author = {Tremmel, Florian and Nagler, O. and Kutter, C. and Holmer, Rainer}, title = {Smart Cantilever Probe with Integrated Force and Acoustic Emission Sensor}, series = {2023 IEEE SENSORS, Vienna, Austria, 10/29/2023 - 11/1/2023}, booktitle = {2023 IEEE SENSORS, Vienna, Austria, 10/29/2023 - 11/1/2023}, publisher = {IEEE}, isbn = {979-8-3503-0387-2}, doi = {10.1109/SENSORS56945.2023.10325021}, pages = {1 -- 4}, abstract = {Acoustic emission (AE) testing recently found its application in the wafer testing sector of the semiconductor industry. To find out the mechanical robustness of semiconductor devices, contact pads on the chip surface are intentionally overstressed with an indenter tip and the appearing oxide cracks are detected with help of the generated AE signals. This is done in a customized test bench with a patented sensor-indenter system. This paper presents an improved version of the measurement setup that solves certain disadvantages of it and can be used in a standard wafer prober. The main components of the developed sensor system are a strain gauge for contact force measurement and a piezoelectric sensor element for AE signal detection. Both components are integrated on a cantilever beam which has an exchangeable indenter tip at its free end. The cantilever probe is electrically conductive to enable electrical tests via the indenter tip. This smart sensor-cantilever combination (SCC) can be mounted with several adapter components on a carrier plate to place it in a wafer prober. For both sensor elements amplifier circuits are developed to enhance their signal-to-noise ratios (SNRs). A prototype setup is shown together with simulated and experimental results to demonstrate its performance. The mechanical properties of the cantilever, as well as the force sensor and the AE crack signals, already fulfill the requirements for an implementation in a wafer prober. To further improve the sensor resolutions and detection limits, several optimizations regarding the design of the SCC are in progress.}, language = {en} } @article{ThemaBauerSterner, author = {Thema, Martin and Bauer, Franz and Sterner, Michael}, title = {Power-to-Gas: Electrolysis and methanation status review}, series = {Renewable and Sustainable Energy Reviews}, volume = {112}, journal = {Renewable and Sustainable Energy Reviews}, number = {7}, publisher = {Elsevier}, doi = {10.1016/j.rser.2019.06.030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-26238}, pages = {775 -- 787}, abstract = {This review gives a worldwide overview on Power-to-Gas projects producing hydrogen or renewable substitute natural gas focusing projects in central Europe. It deepens and completes the content of previous reviews by including hitherto unreviewed projects and by combining project names with details such as plant location. It is based on data from 153 completed, recent and planned projects since 1988 which were evaluated with regards to plant allocation, installed power development, plant size, shares and amounts of hydrogen or substitute natural gas producing examinations and product utilization phases. Cost development for electrolysis and carbon dioxide methanation was analyzed and a projection until 2030 is given with an outlook to 2050. The results show substantial cost reductions for electrolysis as well as for methanation during the recent years and a further price decline to less than 500 euro per kilowatt electric power input for both technologies until 2050 is estimated if cost projection follows the current trend. Most of the projects examined are located in Germany, Denmark, the United States of America and Canada. Following an exponential global trend to increase installed power, today's Power-to-Gas applications are operated at about 39 megawatt. Hydrogen and substitute natural gas were investigated on equal terms concerning the number of projects.}, language = {en} } @article{MonkmanSindersbergerPrem, author = {Monkman, Gareth J. and Sindersberger, Dirk and Prem, Nina}, title = {Magnetically enhanced photoconductive high voltage control}, series = {ISSS Journal of Micro and Smart Systems}, volume = {11}, journal = {ISSS Journal of Micro and Smart Systems}, publisher = {Springer Nature}, doi = {10.1007/s41683-021-00088-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-30606}, pages = {317 -- 328}, abstract = {The recent surge of interest in electrostatic actuators, particularly for soft robotic applications, has placed increasing demands on high voltage control technology. In this respect, optoelectronic bidirectional switching and analogue regulation of high voltages is becoming increasingly important. One common problem is the leakage current due to dark resistance of the material or device used. Another is the physical size of such elements. However, their ability to provide galvanic separation makes them a very attractive alternative to conventional (wired) semiconductor elements. This paper gives an overview of available methods and devices before introducing a concept based on the combination of photoresistive and magnetoresistive effects in Gallium Arsenide that are potentially applicable to other semiconductor materials.}, language = {en} } @article{HaugVetter, author = {Haug, Sonja and Vetter, Miriam}, title = {Altersgerechtes Wohnen im Quartier}, series = {Standort - Zeitschrift f{\"u}r angewandte Geographie}, volume = {45}, journal = {Standort - Zeitschrift f{\"u}r angewandte Geographie}, publisher = {Springer Nature}, issn = {1432-220X}, doi = {10.1007/s00548-020-00678-3}, pages = {11 -- 17}, abstract = {Im Alter nimmt das Quartier aufgrund geringerer Aktionsradien an Bedeutung zu. Der Beitrag befasst sich mit der Frage, welche Besonderheiten sich bei Senioren-Haushalten im Hinblick auf Wohnen und soziale Teilhabe zeigen. Aus dem Projekt MAGGIE werden Ergebnisse einer schriftlichen Haushaltsbefragung (N=195) in der Wohngenossenschaft Margaretenau Regensburg dargestellt. Hierbei wird auf die aktuelle und zuk{\"u}nftige Wohnsituation, den Ver{\"a}nderungsbedarf, den Wunsch nach Gemeinschaftsangeboten und die soziale Einbettung eingegangen. Es zeigt sich eine geringe Ver{\"a}nderungsbereitschaft und ein {\"u}berdurchschnittlich hohes Maß an lokalem Sozialkapital. Am Ende werden Schlussfolgerungen f{\"u}r das Sanierungs- und Quartiersmanagement gezogen.}, subject = {Alter}, language = {de} } @article{HofrichterRankHeberletal., author = {Hofrichter, Andreas and Rank, Daniel and Heberl, Michael and Sterner, Michael}, title = {Determination of the optimal power ratio between electrolysis and renewable energy to investigate the effects on the hydrogen production costs}, series = {International Journal of Hydrogen Energy}, volume = {48}, journal = {International Journal of Hydrogen Energy}, number = {5}, publisher = {Elsevier}, issn = {0360-3199}, doi = {10.1016/j.ijhydene.2022.09.263}, pages = {1651 -- 1663}, abstract = {Green hydrogen via renewable powered electrolysis has a high relevance in decarbonization and supply security. Achieving economically competitive hydrogen production costs is a major challenge in times of an energy price crisis. Our objective is to show the economically optimal installed capacity of electrolysers in relation to wind and solar power so swift and credible statements can be made regarding the system design. The ratio between renewable generation and electrolysis power as well as scaling effects, operating behaviour and development of costs are considered. Hydrogen production costs are calculated for four exemplary real PV and wind sites and different ratios of electrolysis to renewable power for the year 2020. The ideal ratio for PV systems is between 14\% and 73\% and for wind between 3.3\% and 143\% for low and high full load hours. The lowest hydrogen production costs are identified at 2.53 €/kg for 50 MW wind power and 72 MW electrolysis power. The results provide plant constructors the possibility to create a cost-optimized design via an optimum ratio of electrolysis to renewable capacity. Therefore, the procedures for planning and dimensioning of selected systems can be drastically simplified.}, language = {en} } @article{PalombaNowakDawoudetal., author = {Palomba, Valeria and Nowak, Sebastian and Dawoud, Belal and Frazzica, Andrea}, title = {Dynamic modelling of Adsorption systems: a comprehensive calibrated dataset for heat pump and storage applications}, series = {Journal of energy storage}, volume = {33}, journal = {Journal of energy storage}, publisher = {Elsevier}, doi = {10.1016/j.est.2020.102148}, abstract = {The growing efforts for the development of clean and efficient energy systems require the use of a multi-disciplinary approach and the integration of multiple generation appliances. Among the fields that can be considered enabling technologies, adsorption systems for air conditioning and thermal energy storages, are constantly increasing their maturity. However, for a proper design and integration of such systems, there is the need for a simulation framework that is reliable and computationally convenient. In the present paper, the implementation of a dynamic model for adsorption systems is presented, which includes different components (adsorber, phase changer, sorption materials) and is structured as a library. Modelica language and the commercial software Dymola (R) are used for the analysis. Data for different heat exchangers and working pairs are calibrated using experimental results and the calibrated model is subsequently used for the design of an adsorber based on a plate heat exchanger for thermal energy storage applications. The results proved that the model is fast and can reproduce experimental results with good accuracy, thus being a useful tool for the design and optimization of the different components of sorption systems.}, language = {en} } @article{BruniMeijaardRilletal., author = {Bruni, S. and Meijaard, J. P. and Rill, Georg and Schwab, A. L.}, title = {State-of-the-art and challenges of railway and road vehicle dynamics with multibody dynamics approaches}, series = {Multibody System Dynamics}, volume = {49}, journal = {Multibody System Dynamics}, number = {1}, publisher = {Springer}, doi = {10.1007/s11044-020-09735-z}, pages = {1 -- 32}, abstract = {A review of the current use of multibody dynamics methods in the analysis of the dynamics of vehicles is given. Railway vehicle dynamics as well as road vehicle dynamics are considered, where for the latter the dynamics of cars and trucks and the dynamics of single-track vehicles, in particular motorcycles and bicycles, are reviewed. Commonalities and differences are shown, and open questions and challenges are given as directions for further research in this field.}, language = {en} } @article{SternerBauer, author = {Sterner, Michael and Bauer, Franz}, title = {Power-to-X im Kontext der Energiewende und des Klimaschutzes in Deutschland}, series = {Chemie-Ingenieur-Technik}, volume = {92}, journal = {Chemie-Ingenieur-Technik}, number = {1-2}, publisher = {Wiley}, issn = {0009-286X}, doi = {10.1002/cite.201900167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-11669}, pages = {85 -- 90}, abstract = {Um den Einfluss verschiedener Power-to-X-Verfahren auf die Transformation des deutschen Energiesystems und das Erreichen der Klimaschutzziele zu {\"u}berpr{\"u}fen, wurde ein sektor{\"u}bergreifendes Energiesystemmodel entwickelt. Die daraus gewonnenen Ergebnisse zeigen: F{\"u}r eine erfolgreiche Energiewende ist der Einsatz von Power-to-X in Zukunft unverzichtbar. Vor allem in Bereichen und Sektoren, in denen hohe Energiedichten erforderlich und nur wenig andere Optionen zur Defossilisierung vorhanden sind, werden Power-to-X-Technologien zwingend notwendig.}, subject = {Power-to-Gas}, language = {de} } @article{SovacoolCabezaPiselloetal., author = {Sovacool, Benjamin K. and Cabeza, Luisa F. and Pisello, Anna Laura and Colladon, Andrea Fronzetti and Larijani, Hatef Madani and Dawoud, Belal and Martiskainen, Mari}, title = {Decarbonizing household heating: Reviewing demographics, geography and low-carbon practices and preferences in five European countries}, series = {Renewable \& Sustainable Energy Reviews}, journal = {Renewable \& Sustainable Energy Reviews}, number = {139}, publisher = {Elsevier}, doi = {10.1016/j.rser.2020.110703}, pages = {1 -- 28}, abstract = {What commonalities are there in sustainable or unsustainable heating practices in five high-income, high-emitting western European countries? What preferences do a nationally representative sample of the public in these countries hold towards low-carbon options? It is imperative that climate policy researchers and practitioners grapple with the difficulty of decarbonizing heat, which remains the largest single end-use service worldwide and which accounts about half of total final energy consumption. Based on a comparative assessment of five representative national surveys in Germany (N = 2009), Italy (N = 2039), Spain (N = 2038), Sweden (N = 2023), and the United Kingdom (N = 2000), this study explores the demographics and geography of household heat decarbonisation in Europe. By analyzing our country level data as well as our combined sample of 10,109 respondents, it investigates how people conceive of the purposes of low-carbon heat, their preferences for particular forms of heat supply, and their (at times odd) practices of heat consumption and temperature settings. Grounded in its original data, the study organizes its findings inductively across the five themes of literacy (heating knowledge, awareness and control), sustainability (heating practices, dynamics and conflicts), temperature (heating satisfaction and preferences), desirability of change (low-carbon heating priorities, business models and trust), and culture (country and national variation). The study also explores intersections between these dimensions, using multivariate analysis, as well as how preferences differ according to varying types of actors as well as geography and space.}, language = {en} } @article{MikhaeilNowakPalombaetal., author = {Mikhaeil, Makram and Nowak, Sebastian and Palomba, Valeria and Frazzica, Andrea and Gaderer, Matthias and Dawoud, Belal}, title = {Experimental and analytical investigation of applying an asymmetric plate heat exchanger as an evaporator in a thermally driven adsorption appliance}, series = {Applied Thermal Engineering}, journal = {Applied Thermal Engineering}, number = {228}, publisher = {Elsevier}, doi = {10.1016/j.applthermaleng.2023.120525}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-61115}, abstract = {This communication presents an experimental and analytical study on the evaporation mechanism in a closed-structured asymmetric plate heat exchanger (PHE) employed as a stagnant water evaporator for the application in an adsorption heat transformation appliance. To this aim, an experimental unit is constructed, which comprises two identical PHEs, one acting as an vaporator/condenser and the second, as an adsorber/desorber. Two endoscopes are mounted inside the investigated evaporator to visualize the evaporation mechanism when performing adsorption-evaporation processes under different boundary conditions. It turned out that the evaporation mechanism is a partially covered, thin film evaporation. A heat transfer analysis is performed to evaluate the heat transfer coefficient of the thin film evaporation () inside the investigated evaporator, resulting in -values between 1330 and 160 [W∙m-2∙K-1] over the investigated adsorption-evaporation time. Correlating the obtained () to the film thickness and the wetted area results in -values between 0.34 and 0.78 [mm] and wetted to total area ratios of 0.78 to 0.16. Besides, an analytical model has been developed and introduced to correlate the overall evaporator heat transfer coefficient with the adsorption potential and the time rate of change of the water uptake.}, language = {en} } @article{MonkmanSindersbergerPremetal., author = {Monkman, Gareth J. and Sindersberger, Dirk and Prem, Nina and Diermeier, Andreas and Szecsey, Tamara}, title = {Dielectric behaviour of magnetic hybrid materials}, series = {Physical Sciences Reviews}, volume = {7}, journal = {Physical Sciences Reviews}, number = {10}, publisher = {de Gruyter}, doi = {10.1515/psr-2019-0121}, pages = {1169 -- 1185}, abstract = {The objectives of this work include the analysis of electrical and magnetic properties of magneto-elastic hybrid materials with the intention of developing new techniques for sensor and actuator applications. This includes the investigation of dielectric properties at both low and high frequencies. The behaviour of capacitors whose dielectrics comprise magnetic hybrid materials is well known. Such interfacial magnetocapacitance can be varied according to magnetic content, magnetic flux density and the relative permittivity of the polymer matrix together with other dielectric content. The basic function of trapping electrical charges in polymers (electrets) is also established technology. However, the combination of magnetoactive polymers and electrets has led to the first electromagnetic device capable of adhering to almost any material, whether magnetically susceptible or not. During the course of this research, in addition to dielectrics, electrically conductive polymers based on (PDMS) matrices were developed in order to vary the electrical properties of the material in a targeted manner. In order to ensure repeatable results, this demanded new fabrication techniques hitherto unavailable. The 3D printing of silicones is far from being a mature technology and much pioneering work was necessary before extending the usual 3 d.o.f. to include orientation about and diffusion of particles in these three axes, thus leading to the concept of 6D printing. In 6D printing, the application of a magnetic field can be used during the curing process to control the particulate distribution and thus the spatial filler particle density as desired. Most of the devices (sensors and actuators) produced by such methods contain levels of carbonyl iron powder (CIP) embedded magnetic filler of up to 70 wt\%. Contrary to this, a hitherto neglected research area, namely magnetoactive polymers (MAPs) having significantly lower magnetic particle concentrations (1 to 3 wt\% CIP) were also investigated. With filler concentrations lower than 3 wt\%, structures are formed which are completely absent at higher filler levels. CIP concentrations in the range of 1wt\% demonstrate the formation of toroidal structures. Further development of coherent rings with a compact order results as filler concentrations increase towards 2 wt\%. Above 3 wt\% the structure eventually disintegrates to the usual random order found in traditional MAP with higher CIP content. Structured samples containing 1\%-3 wt\% CIP were investigated with the aid of X-ray tomography where solitary ring structures can be observed and eventually the formation of capillary doubles. Over wavelengths ranging from 1 to 25 µm, spectroscopic analysis of thin film MAP samples containing 2 wt\% CIP revealed measurable magnetic-field-dependent changes in IR absorption at a wavenumber 2350 (λ = 4.255 µm). This was found to be due to the diamagnetic susceptibility of atmospheric carbon dioxide (CO2). Consequently, the first potential application for sparse matrix MAPs was found.}, language = {en} } @article{MikhaeilGadererDawoud, author = {Mikhaeil, Makram and Gaderer, Matthias and Dawoud, Belal}, title = {On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study}, series = {Energy}, volume = {207}, journal = {Energy}, number = {September}, publisher = {Elsevier}, doi = {10.1016/j.energy.2020.118272}, pages = {1 -- 13}, abstract = {An innovative adsorber plate heat exchanger (APHE), which is developed for application in adsorption heat pumps, chillers and thermal energy storage systems, is introduced. A test frame has been constructed as a representative segment of the introduced APHE for applying loose grains of AQSOA-Z02. Adsorption kinetic measurements have been carried out in a volumetric large-temperature-jump setup under typical operating conditions of adsorption processes. A transient 2-D model is developed for the tested sample inside the setup. The measured temporal uptake variations with time have been fed to the model, through which a micro-pore diffusion coefficient at infinite temperature of 2 E-4 [m2s-1] and an activation energy of 42.1 [kJ mol-1] have been estimated. A 3-D model is developed to simulate the combined heat and mass transfer inside the APHE and implemented in a commercial software. Comparing the obtained results with the literature values for an extruded aluminium adsorber heat exchanger coated with a 500 μm layer of the same adsorbent, the differential water uptake obtained after 300 s of adsorption (8.2 g/100 g) implies a sound enhancement of 310\%. This result proves the great potential of the introduced APHE to remarkably enhance the performance of adsorption heat transformation appliances.}, language = {en} } @article{MonkmanStrieglPremetal., author = {Monkman, Gareth J. and Striegl, Birgit and Prem, Nina and Sindersberger, Dirk}, title = {Electrical Properties of Magnetoactive Boron-Organo-Silicon Oxide Polymers}, series = {Macromolecular Chemistry and Physics}, volume = {221}, journal = {Macromolecular Chemistry and Physics}, number = {4}, publisher = {Wiley}, doi = {10.1002/macp.201900342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-26488}, pages = {1 -- 8}, abstract = {The electrical properties of rheopectic magnetoactive composites comprising boron-organo-silicon oxide dielectric matrices containing carbonyl iron microparticles are presented for the first time. The increase in interfacial magnetocapacitance is seen to greatly exceed that experienced when using conventional elastomeric matrices such as polydimethylsiloxane. In addition to the increase in capacitance, a simultaneous and sharp decrease in the parallel electrical resistance over several orders of magnitude is also observed. The effects are time dependent but repeatable. Potential applications include magnetically controlled frequency dependent devices, magnetic sensor systems, weighting elements for neural networks, etc.}, language = {en} } @article{PremSindersbergerMonkman, author = {Prem, Nina and Sindersberger, Dirk and Monkman, Gareth J.}, title = {Infrared spectral analysis of low concentration magnetoactive polymers}, series = {Journal of Applied Polymer Science}, volume = {137}, journal = {Journal of Applied Polymer Science}, number = {7}, publisher = {Wiley}, organization = {WILEY}, issn = {1097-4628}, doi = {10.1002/app.48366}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-25913}, pages = {1 -- 7}, abstract = {This work concerns an area of magnetoactive polymer (MAP) research seldom considered. Traditionally only MAP with high concentrations of magnetic filler (typically between 10 and 90 wt\%) have been investigated. This article deals with a hitherto neglected aspect of research, namely MAP containing lower magnetic filler concentrations (1 to 3 wt\%). This article utilizes a range of spectroscopic analysis methods (Raman and FTIR) and their applicability to MAP characterization at wavelengths ranging from 2.5 to 25 mu m. Particular attention is paid to low carbonyl iron particle (CIP) concentrations in MAP for which the emergence of capillary doublets at a critical 2 wt\% concentration is revealed. This results in measurable magnetic field-dependent changes in IR absorption at a wavelength of 4.255 mu m together with a detectable CO2 susceptibility. (c) 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48366.}, language = {en} }