@inproceedings{WeberHaug, author = {Weber, Karsten and Haug, Sonja}, title = {Automatisiertes Fahren: Evolution{\"a}re Weiterentwicklung statt Disruption}, series = {Vierte Jahreskonferenz des Netzwerks INDIGO zum Thema "Mobilit{\"a}t", 23.11.2018, , TH Deggendorf}, booktitle = {Vierte Jahreskonferenz des Netzwerks INDIGO zum Thema "Mobilit{\"a}t", 23.11.2018, , TH Deggendorf}, language = {de} } @article{BringoutErbFrikel, author = {Bringout, Ga{\"e}l and Erb, Wolfgang and Frikel, J{\"u}rgen}, title = {A new 3D model for Magnetic Particle Imaging using realistic magnetic field topologies for algebraic reconstruction}, series = {Inverse Problems}, volume = {36}, journal = {Inverse Problems}, number = {12}, publisher = {IOP Publishing}, doi = {10.1088/1361-6420/abb446}, abstract = {We derive a new 3D model for magnetic particle imaging (MPI) that is able to incorporate realistic magnetic fields in the reconstruction process. In real MPI scanners, the generated magnetic fields have distortions that lead to deformed magnetic low-field volumes with the shapes of ellipsoids or bananas instead of ideal field-free points (FFP) or lines (FFL), respectively. Most of the common model-based reconstruction schemes in MPI use however the idealized assumption of an ideal FFP or FFL topology and, thus, generate artifacts in the reconstruction. Our model-based approach is able to deal with these distortions and can generally be applied to dynamic magnetic fields that are approximately parallel to their velocity field. We show how this new 3D model can be discretized and inverted algebraically in order to recover the magnetic particle concentration. To model and describe the magnetic fields, we use decompositions of the fields in spherical harmonics. We complement the description of the new model with several simulations and experiments, exploring the effects of magnetic fields distortion and reconstruction parameters on the reconstruction.}, language = {en} } @misc{Rauch, type = {Master Thesis}, author = {Rauch, Johannes}, title = {Entwicklung eines Regelverfahrens f{\"u}r einen optimierten und zentralen Blindleistungsabruf zur Beeinflussung des Blindleistungshaushalts von Mittelspannungsnetzen unter Einhaltung von Netzrestriktionen}, doi = {10.35096/othr/pub-659}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-6595}, school = {Ostbayerische Technische Hochschule Regensburg}, pages = {115}, abstract = {Die Energiewende f{\"u}hrt zu neuen Herausforderungen f{\"u}r Verteilungsnetzbetreiber hinsichtlich der Er-bringung von Systemdienstleistungen, der Integration weiterer Erzeugungsanlagen und Lasten sowie der Gew{\"a}hrleistung einer hohen Versorgungssicherheit und normgerechten Spannungsqualit{\"a}t. Die De-ckung der auftretenden Blindleistungsbedarfe seitens der Netzbetriebsmittel, Verbraucher und Erzeu-gungsanlagen gewinnt durch den Wegfall der Großkraftwerke f{\"u}r Netzbetreiber zunehmend an Bedeu-tung. Das Projekt SyNErgie besch{\"a}ftigt sich diesbez{\"u}glich mit der Entwicklung neuartiger Blindleis-tungsmanagementsysteme f{\"u}r Mittelspannungsnetze. Ziel ist es, das bisher ungenutzte, freie Blindleis-tungspotential betrieblicher Kompensationsanlagen und dezentraler Erzeugungsanlagen (allgemein: Blindleistungsquellen) zu nutzen, um die Blindleistungs{\"a}nderungsf{\"a}higkeit eines Verteilungsnetzes zu erh{\"o}hen. Diese Arbeit besch{\"a}ftigt sich mit der Entwicklung eines zentralen Blindleistungsregelsystems, bei dem Blindleistungsquellen auf Basis von „Optimal Power Flow"-Berechnungen {\"u}ber eine zentrale Recheninstanz angesteuert werden. Zum Einsatz kommt dabei ein Optimierungsalgorithmus, der auf Basis des aktuellen Netzzustandes (Spannungs- und Auslastungsreserven) und des aktuellen Blindleis-tungspotentials der Blindleistungsquellen einen bedarfsoptimalen Abruf koordiniert. Das zentrale Re-gelverfahren wird in Netzmodellen verschiedenartiger Mittelspannungsnetzgruppen und unterschiedli-cher Art und Anzahl von Blindleistungsquellen angewendet sowie im Hinblick auf variierende Zielvor-gaben und Randbedingungen evaluiert und diskutiert.}, language = {de} } @misc{Urban, type = {Master Thesis}, author = {Urban, Johannes}, title = {Photoelektrisches Direktladen von Elektrofahrzeugen im Inselbetrieb}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-20285}, school = {Ostbayerische Technische Hochschule Regensburg}, pages = {118}, abstract = {Die Arbeit befasst sich mit der Ladung von Elektrofahrzeugen durch Solarenergie in einem Inselsystem. Diese Art der Ladung entlastet die Netze und hat einen sehr hohen Leistungswirkungsgrad. Es wurde ein Prototyp einer Direkt-ladestation gebaut, welche verschiedene Elektrofahrzeuge mit einem neuartigen Verfahren aufladen kann. Sie enth{\"a}lt einen optionalen Pufferakkumulator und einen Vollbr{\"u}cken-Gegentaktwandler f{\"u}r die Ladung bei schlechter Solarleistung. Ein Teil der Arbeit behandelt ausf{\"u}hrlich die Auslegung, die Komponenten und bisher undokumentiertes Verhalten von Gegentaktwandlern. Des Weiteren wird das Prinzip der Solardirekt-ladung und deren Umsetzung sowie die Umsetzung des Gesamtsystems beschrieben. Es folgt ein Kapitel zur Wirtschaftlichkeit der Solardirektladung mit Handlungsempfehlungen. Insgesamt l{\"a}sst sich schließen, dass Solardirektladung bei nutzungsorientierter Auslegung der Anlage und langer Laufzeit wirtschaftlich ist. This work addresses the charging of electric vehicles with solar power in an off-grid system. Charging this way reduces the stress on the grid and has a very high power efficiency. A prototype of a direct charging station was built which is able to charge several different electric vehicles in a novel way. It includes an optional buffer battery and a full bridge converter for being able to charge electric vehicles at times o flow solar power. One chapter explains in detail the design, the components and so far undocumented properties of full and half bridge converters. The principle and the implementation of direct solar charging and the implementation of the whole system is described. The last chapter covers the cost effectiveness of solar chargin gas well as recommendations. All in all it can be stated that solar direct charging is ecomomically advantageous if it is projected according to the user's demand.}, subject = {Fotovoltaik}, language = {de} } @article{KeimMarxNonnetal., author = {Keim, Vincent and Marx, P. and Nonn, Aida and M{\"u}nstermann, Sebastian}, title = {Fluid-structure-interaction modeling of dynamic fracture propagation in pipelines transporting natural gases and CO2-mixtures}, series = {International Journal of Pressure Vessels and Piping}, volume = {175}, journal = {International Journal of Pressure Vessels and Piping}, number = {August}, publisher = {Elsevier}, doi = {10.1016/j.ijpvp.2019.103934}, abstract = {As part of current design standards, the Battelle Two-Curve Model (BTCM) is still widely used to predict and secure ductile crack arrest in gas transmission pipelines. For modern linepipe steels and rich natural gases or CO2 mixtures, the BTCM might lead to incorrect predictions. On the one hand, it suffers from the insufficient description of the individual physical processes in the pipe material and fluid itself. Furthermore, the model does not account for fluid-structure-interaction (FSI) effects during simultaneous running-ductile fracture (RDF) and mixture decompression. Numerical FSI models allow for a more sophisticated, coupled analysis of the driving forces for the failure of pipelines. This paper deals with the development of an FSI model for the coupled prediction of 3D pressure profiles acting on the inner pipe wall during crack propagation. The coupled Euler-Lagrange (CEL) method is used to link the fluid and structure models. In a Lagrange formulation, the modified Bai-Wierzbicki (MBW) model describes the plastic deformation and ductile fracture as a function of the underlying stress/strain conditions. The fluid behavior is calculated in a 3D model space by Euler equations and the GERG-2008 reference equation of state (EOS). The coupled CEL model is used to predict the RDF in small-diameter pipe sections for different fluid mixtures. The calculated 3D pressure distributions ahead and behind the running crack tip (CT) significantly differ in axial and circumferential directions depending on the mixture composition. The predicted FSI between the pipe wall and fluid decompression in 3D CEL/FSI model provides reliable knowledge about the pressure loading of the pipeline during RDF.}, subject = {Fluid-Struktur-Wechselwirkung}, language = {en} } @inproceedings{SchorrBoehmZentneretal., author = {Schorr, Philipp and B{\"o}hm, Valter and Zentner, Lena and Zimmermann, Klaus}, title = {Dynamical Investigation of Crawling Motion System based on a Multistable Tensegrity Structure}, series = {Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics : Porto, Portugal, 29.07.2018 - 31.07.2018}, booktitle = {Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics : Porto, Portugal, 29.07.2018 - 31.07.2018}, publisher = {SCITEPRESS}, isbn = {978-989-758-321-6}, doi = {10.5220/0006852701220130}, pages = {122 -- 130}, abstract = {The basic idea of this article is the utilization of the multistable character of a compliant tensegrity structure to control the direction of motion of a crawling motion system. A crawling motion system basing on a two-dimensional tensegrity structure with multiple stable equilibrium states is considered. This system is in contact with a horizontal plane due to gravity. For a selected harmonic actuation of the system small oscillations around the given equilibrium state of the tensegrity structure occur and the corresponding uniaxial motion of the system is evaluated. A change of the equilibrium state of the tensegrity structure yields to novel configuration of the entire system. Moreover, the motion behavior of the novel configuration is totally different although the actuation strategy is not varied. In particular, the direction of motion changes. Therefore, this approach enables a uniaxial bidirectional crawling motion with a controllable direction of motion using only one actuat or with a selected excitation frequency.}, language = {en} } @article{SchorrBoehmZentneretal., author = {Schorr, Philipp and B{\"o}hm, Valter and Zentner, Lena and Zimmermann, Klaus}, title = {Motion characteristics of a vibration driven mobile tensegrity structure with multiple stable equilibrium states}, series = {Journal of Sound and Vibration}, volume = {437}, journal = {Journal of Sound and Vibration}, number = {December}, publisher = {Elsevier}, doi = {10.1016/j.jsv.2018.09.019}, pages = {198 -- 208}, abstract = {A novel type of a vibration driven motion system based on a compliant tensegrity structure with multiple stable equilibrium states is considered. These equilibrium configurations correspond to different prestress states with different dynamical properties. Therefore, the motion characteristics can be varied by changing the equilibrium state. For the application in the fields of mobile robotics, these discrete adjustable dynamics are advantageous. The vibration modes of the structure as well as the corresponding motion characteristics of the system can be adapted to the given environmental conditions in order to ensure a reliable motion. In this paper, dynamical investigations of an exemplary two-dimensional multistable tensegrity structure are considered. For the chosen parameter values the structure features two relevant equilibrium configurations. The resulting motion system is in contact to a horizontal plane due to gravity and the actuation is realized by the harmonic variation of the length of a single tensioned member. The motion of the system is simulated for various actuation frequencies with the different equilibrium states as an initial configuration. A uniaxial or a planar movement occurs depending on the selection of the actuated member within the tensegrity structure. The steady state motion is evaluated regarding motion characteristics like the steady state velocity. Moreover, the influences on the motion behavior caused by the different equilibrium states as an initial condition are emphasized. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @inproceedings{BoehmSchorrZimmermannetal., author = {B{\"o}hm, Valter and Schorr, Philipp and Zimmermann, Klaus and Zentner, Lena}, title = {An Approach to the Estimation of the Actuation Parameters for Mobile Tensegrity Robots with Tilting Movement Sequences}, series = {2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR); 20-22 June 2018; Delft, Netherlands}, booktitle = {2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR); 20-22 June 2018; Delft, Netherlands}, publisher = {IEEE}, doi = {10.1109/REMAR.2018.8449871}, pages = {1 -- 8}, abstract = {This paper deals with the locomotion by tilting sequences of shape-variable compliant tensegrity structures. The shape of these structures is controlled by manipulating their prestress state. The tensegrity structure is tilting as consequence of a suitable variation of its shape. By multiple repetition of such tilting sequences a motion is generated. Quasi-static considerations for the considered structures are presented in order to estimate the actuation parameters. For a proper number of actuators this quasi-static approach enables an analytical calculation of the actuation parameters of the structure in order to control the geometrical configuration as required. As an example a two-dimensional tensegrity structure which is in contact with a horizontal plane due to gravity is considered. By successive tilting sequences a uniaxial motion results. The excitation of the structure is calculated for a given change of shape with the quasi-static analysis. The according results are compared with transient dynamic simulations. Qualitative conclusions about the motion behavior and the usability of the quasi-static approach are given.}, language = {en} } @inproceedings{CarrilloLiSchorrKaufholdetal., author = {Carrillo Li, Enrique Roberto and Schorr, Philipp and Kaufhold, Tobias and Rodr{\´i}guez Hern{\´a}ndez, Jorge Antonio and Zentner, Lena and Zimmermann, Klaus and B{\"o}hm, Valter}, title = {Kinematic analysis of the rolling locomotion of mobile robots based on tensegrity structures with spatially curved compressed components}, series = {Applicable Solutions in Non-Linear Dynamical Systems; 15th International Conference "Dynamical Systems - Theory and Applications" (DSTA 2019, 2-5 December, 2019, Lodz, Poland}, booktitle = {Applicable Solutions in Non-Linear Dynamical Systems; 15th International Conference "Dynamical Systems - Theory and Applications" (DSTA 2019, 2-5 December, 2019, Lodz, Poland}, editor = {Awrejcewicz, Jan and Ka{\'{z}}mierczak, Markek and Olejnik, Paweł}, publisher = {Wydawnictwo Politechniki Ł{\´o}dzkiej}, address = {Ł{\´o}d{\'{z}}, Polen}, isbn = {978-83-66287-30-3}, pages = {335 -- 344}, abstract = {In this work, a tensegrity structure with spatially curved members is applied as rolling locomotion system. The actuation of the structure allows a variation of the originally cylindrical shape to a conical shape. Moreover, the structure is equipped with internal movable masses to control the position of the center of mass of the structure. To control the locomotion system a reliable actuation strategy is required. Therefore, the kinematics of the system considering the nonholonomic constraints are derived in this paper. Based on the resulting insight in the locomotion behavior a feasible actuation strategy is designed to control the trajectory of the system. To verify this approach kinematic analyses are evaluated numerically. The simulation data confirm the path following due to an appropriate shape change of the tensegrity structure. Thus, this system enables a two-dimensional rolling locomotion. The use of mechanically compliant tensegrity structures in mobile robots is an attractive research topic, due to the possibility to adjust their mechanical properties reversibly during locomotion. In this paper rolling locomotion of mobile robots based on simple tensegrity structures, consisting of three compressed spatially curved members connected to a continuous net of prestressed tensional members, is discussed. Planar locomotion of these robots is induced by the movement of internal masses. The movement direction can be changed by changing the robot's shape between a cylinder and a truncated cone. The paper focuses on the description of the kinematics of these systems with respect to the shape change.}, language = {en} } @inproceedings{NonnParedesKeimetal., author = {Nonn, Aida and Paredes, Marcelo and Keim, Vincent and Wierzbicki, Tomasz}, title = {Comparison of Fracture Models to Quantify the Effects of Material Plasticity on the Ductile Fracture Propagation in Pipelines}, series = {Proceedings of the 2018 12th International Pipeline Conference, Volume 3: Operations, Monitoring, and Maintenance, Materials and Joining, September 24-28, 2018, Calgary, Alberta, Canada}, booktitle = {Proceedings of the 2018 12th International Pipeline Conference, Volume 3: Operations, Monitoring, and Maintenance, Materials and Joining, September 24-28, 2018, Calgary, Alberta, Canada}, doi = {10.1115/IPC2018-78366}, abstract = {Various numerical approaches have been developed in the last years aimed to simulate the ductile fracture propagation in pipelines transporting CO2 or natural gas. However, a reliable quantification of the influence of material plasticity on the fracture resistance is still missing. Therefore, more accurate description of the material plasticity on the ductile fracture propagation is required based on a suitable numerical methodology. In this study, different plasticity and fracture models are compared regarding the ductile fracture propagation in X100 pipeline steel with the objective to quantify the influence of plasticity parameters on the fracture resistance. The plastic behavior of the investigated material is considered by the quadratic yield surface in conjunction with a non-associated quadratic plastic flow potential. The strain hardening can be appropriately described by the mixed Swift-Voce law. The simulations of ductile fracture are conducted by an uncoupled, modified Mohr-Coulomb (MMC) and the micromechanically based Gurson-Tvergaard-Needleman (GTN) models. In contract to the original GTN model, the MMC model is capable of describing ductile failure over wide range of stress states. Thus, ductile fracture resistance can be estimated for various load and fracture scenarios. Both models are used for the simulation of fracture propagation in DWTT and 3D pressurized pipe sections. The results from the present work can serve as a basis for establishing the correlation between plasticity parameters and ductile fracture propagation.}, language = {en} }