@article{SelmairMaurerLaietal., author = {Selmair, Maximilian and Maurer, Tobias and Lai, Chun-Han and Grant, David}, title = {Enhancing the efficiency of charging \& parking processes for Autonomous Mobile Robot fleets}, series = {Journal of Power Sources}, volume = {521}, journal = {Journal of Power Sources}, number = {3}, publisher = {Elsevier}, doi = {10.1016/j.jpowsour.2021.230894}, abstract = {The allocation of tasks to Autonomous Mobile Robots in a production setting in combination with the most efficient parking and charging processes are the focus of this paper. This study presents a simulative evaluation of the theoretical allocation methods developed in Selmair and Maurer (2020) combined with either hard or dynamic availability rules to ascertain the most efficient parameters of an Autonomous Mobile Robot System. In order to quantify this efficiency, the following Key Performance Indicator (KPI) were considered: number of delayed orders, driven fleet metres and the percentage of available Autonomous Mobile Robot as determined by their state of charge. Additionally, as an alternative energy source, a fast-charging battery developed by Battery Streak Inc. was included in this study. The results show that, in comparison to a conventional and commonly used trivial strategy, our developed strategies provide superior results in terms of the relevant KPI.}, language = {en} } @article{WalterSchwanzerSteineretal., author = {Walter, Stefanie and Schwanzer, Peter and Steiner, Carsten and Hagen, Gunter and Rabl, Hans-Peter and Dietrich, Markus and Moos, Ralf}, title = {Mixing Rules for an Exact Determination of the Dielectric Properties of Engine Soot Using the Microwave Cavity Perturbation Method and Its Application in Gasoline Particulate Filters}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {9}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/s22093311}, pages = {1 -- 17}, abstract = {In recent years, particulate filters have become mandatory in almost all gasoline-powered vehicles to comply with emission standards regarding particulate number. In contrast to diesel applications, monitoring gasoline particulate filters (GPFs) by differential pressure sensors is challenging due to lower soot masses to be deposited in the GPFs. A different approach to determine the soot loading of GPFs is a radio frequency-based sensor (RF sensor). To facilitate sensor development, in previous work, a simulation model was created to determine the RF signal at arbitrary engine operating points. To ensure accuracy, the exact dielectric properties of the soot need to be known. This work has shown how small samples of soot-loaded filter are sufficient to determine the dielectric properties of soot itself using the microwave cavity perturbation method. For this purpose, mixing rules were determined through simulation and measurement, allowing the air and substrate fraction of the sample to be considered. Due to the different geometry of filter substrates compared to crushed soot samples, a different mixing rule had to be derived to calculate the effective filter properties required for the simulation model. The accuracy of the determined mixing rules and the underlying simulation model could be verified by comparative measurements on an engine test bench.}, language = {en} } @article{MikhaeilGadererDawoud, author = {Mikhaeil, Makram and Gaderer, Matthias and Dawoud, Belal}, title = {Experimental Investigation of the Adsorption and Desorption Kinetics on an Open-Structured Asymmetric Plate Heat Exchanger; Matching Between Small-Scale and Full-Scale Results}, series = {Frontiers in Energy Research}, volume = {10}, journal = {Frontiers in Energy Research}, publisher = {Frontiers}, doi = {10.3389/fenrg.2022.818486}, pages = {1 -- 15}, abstract = {This paper introduces the results of an experimental study on the adsorption and desorption kinetics of a commercially available, open-structured asymmetric plate heat exchanger adapted to act as an adsorber/desorber for the application in adsorption heat transformation processes. In addition, a volumetric large temperature jump (V-LTJ) kinetic setup was applied to measure the adsorption and desorption kinetics of a small-scale adsorbent sample prepared dedicatedly to be representative for the adsorbent domain inside the investigated adsorber plate heat exchanger (APHE). All kinetic results of the small-scale adsorbent sample and the APHE were fitted into exponential forms with a single characteristic time constant (τ) with a coefficient of determination (R2) better than 0.9531. A very good matching between the small-scale and full-scale adsorption kinetic measurements was obtained, with an average relative deviation of 12.3\% in the obtained τ-values. In addition, the kinetic data of the small-scale adsorbent sample were utilized for estimating the expected specific instantaneous and moving average powers of the evaporator/condenser heat exchanger. The average relative deviation (ARD) between the moving average specific evaporator powers obtained from the small-scale and the full-scale measurements amounts between 5.4 and 15.1\%.}, language = {en} } @article{ZacherlWopperSchwanzeretal., author = {Zacherl, Florian and Wopper, Christoph and Schwanzer, Peter and Rabl, Hans-Peter}, title = {Potential of the Synthetic Fuel Oxymethylene Ether (OME) for the Usage in a Single-Cylinder Non-Road Diesel Engine: Thermodynamics and Emissions}, series = {Energies}, volume = {15}, journal = {Energies}, number = {21}, publisher = {MDPI}, doi = {10.3390/en15217932}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-55350}, pages = {1 -- 26}, abstract = {Non-road sectors, such as agriculture and construction machinery, require high energy densities and flexibility in use, which is why diesel engines are mainly used. The use of climate-neutral fuels, produced from renewable energies, such as Oxymethylene Ether (OME) as a diesel substitute, can significantly reduce CO2 and pollutant emissions in these sectors. In addition to CO2 neutrality, OME also offers improved combustion characteristics compared to diesel fuel, eliminating the soot-NOx trade-off and thus enabling new opportunities in engine design and calibration. In this paper, the combustion of pure OME on a close-to-production, single-cylinder non-road diesel engine with a pump-line-nozzle injection system is analyzed. A variation of the center of combustion at constant power output was performed for diesel and OME at different operating points. Two injectors were investigated with OME. A study on ignition delay and a detailed thermodynamic analysis was carried out. In addition, the exhaust emissions CO, NOx, VOC, as well as particulate-matter, -number and -size distributions were measured. With OME, a significantly shorter ignition delay as well as a shortened combustion duration could be observed, despite a longer injection duration. In addition, the maximum injection pressure increases. VOC and CO emissions are reduced. Particulate matter was reduced by more than 99\% and particle number (>10 nm) was reduced by multiple orders of magnitude. The median of the particle size distribution shifts from 60 to 85 nm (diesel) into a diameter range of sub 23 nm (OME). A significant reduction of NOx emissions with OME enables new degrees of freedom in engine calibration and an efficiency advantage without hardware adaption.}, language = {en} } @unpublished{GaertnerMarxSchubachGadereretal., author = {G{\"a}rtner, Sebastian and Marx-Schubach, Thomas and Gaderer, Matthias and Schmitz, Gerhard and Sterner, Michael}, title = {Introduction of an Innovative Energy Concept for low Emission Glass Melting based on Carbon Capture and Usage}, doi = {10.31224/2642}, abstract = {Due to the very high fossil energy demand, the glass industry is looking for innovative approaches for the reduction of CO2 emissions and the integration of renewable energy sources. In this paper, we present a novel power-to-gas concept, which has no impact on established melting processes and discuss it for this purpose. A special focus is set on the required CO2 capture from typical flue gases in the glass industry, as this process has not been investigated in detail yet. We used a process simulation approach to investigate post-combustion CO2 capture by absorption processes, followed by a techno-economic evaluation. Our investigations found the designed CO2 capture plant to be approx. 400 times smaller than absorption based CO2 separation processes for conventional power plants. Due to the many options for waste heat utilization, the waste heat required for CO2 desorption can be generated in a particularly efficient and cost-effective way. The resulting CO2 avoidance costs range between 41-42 €/t CO2, depending on waste heat utilization for desorption, and thus offer a cost effective way of CO2 removal from glass industry melting processes. These costs are well below the values of 50-65 €/t CO2 described so far for comparable industrial applications. In addition, we describe optimization options, like solvent and process improvements, to enable further cost reductions. These results motivate further research and development on the overall process presented in this work.}, language = {en} } @article{KaulBoellmannThemaetal., author = {Kaul, Anja and Boellmann, Andrea and Thema, Martin and Kalb, Larissa and Stoeckl, Richard and Huber, Harald and Sterner, Michael and Bellack, Annett}, title = {Combining a robust thermophilic methanogen and packing material with high liquid hold-up to optimize biological methanation in trickle-bed reactors}, series = {Bioresource technology}, volume = {345}, journal = {Bioresource technology}, publisher = {Elsevier}, doi = {10.1016/j.biortech.2021.126524}, abstract = {The hydrogen gas-to-liquid mass transfer is the limiting factor in biological methanation. In trickle-bed reactors, mass transfer can be increased by high flow velocities in the liquid phase, by adding a packing material with high liquid hold-up or by using methanogenic archaea with a high methane productivity. This study developed a polyphasic approach to address all methods at once. Various methanogenic strains and packings were investigated from a microbial and hydrodynamic perspective. Analyzing the ability to produce high-quality methane and to form biofilms, pure cultures of Methanothermobacter performed better than those of the genus Methanothermococcus. Liquid and static hold-up of a packing material and its capability to facilitate attachment was not attributable to a single property. Consequently, it is recommended to carefully match organism and packing for optimized performance of trickle-bed reactors. The ideal combination for the ORBIT system was identified as Methanothermobacter thermoautotrophicus IM5 and DuraTop (R).}, language = {en} } @inproceedings{WagnerAlAbadiBuchner, author = {Wagner, Marcus and Al-Abadi, Ali and Buchner, Stefan}, title = {A Numerical-Based Model to Determine the Resonance of the Steel Cores of Transformers}, series = {ARWtr 2022 proceedings : 2022 7th Advanced Research Workshop on Transformers (ARWtr), October (23)24-26, 2022, Baiona, Spain}, booktitle = {ARWtr 2022 proceedings : 2022 7th Advanced Research Workshop on Transformers (ARWtr), October (23)24-26, 2022, Baiona, Spain}, editor = {L{\´o}pez-Fern{\´a}ndez, Xose M.,}, publisher = {IEEE}, isbn = {978-84-09-45157-9}, doi = {https://doi.org/10.23919/ARWtr54586.2022.9959938}, pages = {36 -- 41}, abstract = {The laminated steel core of transformers is one of the main sources of the generated sound, as it is excited by different electromagnetic effects during its normal operation. If the core is excited in its eigenfrequencies, the sound generated by a transformer will increase significantly. Therefore, knowledge of the core's eigenmodes and -frequencies in an early design stage can decrease expenses by avoiding costly modifications that might be required to avoid the sound levels exceeding the specified values after the final factory acceptance test. The current study focuses on developing a core resonance model to determine the eigenmodes and -frequencies of a transformer core. The core's geometry was simplified to a connected-beam structure and a numerical-based approach was applied. The accuracy of the developed model was validated against finite element method (FEM), using ANSYS on a reference core model.}, language = {en} } @inproceedings{WagnerLehrerFrankeetal., author = {Wagner, Marcus and Lehrer, Tobias and Franke, Markus and Al-Abadi, Ali and Gamil, Ahmed}, title = {A Tank Resonance Model for Power Transformers}, series = {ARWtr 2022 proceedings, 2022 7th Advanced Research Workshop on Transformers (ARWtr): October (23)24-26, 2022, Baiona, Spain}, booktitle = {ARWtr 2022 proceedings, 2022 7th Advanced Research Workshop on Transformers (ARWtr): October (23)24-26, 2022, Baiona, Spain}, publisher = {IEEE}, organization = {Institute of Electrical and Electronics Engineers (IEEE)}, doi = {10.23919/ARWtr54586.2022.9959917}, pages = {7 -- 12}, abstract = {During the factory acceptance test, the sound levels are measured. If the measured sound levels exceed pre-specified values, modifications on the transformer's active part and/or tank need to be conducted. Tank resonance, if occurs, at twice main power frequency and its higher harmonics is one of the main reasons of amplifying the generated sound levels. Therefore, it is preferable to know already in the design stage about the occurrence of the tank resonance and propose reliable tank solutions. The current study presents a newly developed model for calculating the mode shapes and its corresponding eigenfrequencies of the tank.}, language = {en} } @inproceedings{RauchBrueckl, author = {Rauch, Johannes and Br{\"u}ckl, Oliver}, title = {Konzeptionierung netzplanerischer Prozessans{\"a}tze zur Ermittlung von Blindleistungskapazit{\"a}ten zum Ausgleich des Blindleistungsbedarfs in einer Netzregion}, series = {Tagungsband Tagung Zuk{\"u}nftige Stromnetze 26./27. Januar 2022 (online)}, booktitle = {Tagungsband Tagung Zuk{\"u}nftige Stromnetze 26./27. Januar 2022 (online)}, publisher = {Conexio-PSE GmbH}, address = {Pforzheim}, isbn = {978-3-948176-16-7}, doi = {10.35096/othr/pub-5866}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-58665}, pages = {117 -- 126}, abstract = {Um einen sicheren und zuverl{\"a}ssigen Stromnetzbetrieb zu gew{\"a}hrleisten, muss die Spannung im Grundfall als auch bei ungeplanten Ausf{\"a}llen in definierten Bereichen gehalten werden. Im {\"U}bertragungsnetz wird hierf{\"u}r bisher Blindleistung haupts{\"a}chlich aus Blindleistungskompensationsanlagen und konventionellen Großkraftwerken eingesetzt. Zuk{\"u}nftig wird nach \S12h EnWG eine marktgest{\"u}tzte Beschaffung dieser Dienstleistung zur Spannungsregelung vorgeschrieben. Zugleich ver{\"a}ndert sich der Blindleistungsbedarf der Netzbetriebsmittel durch die Integration erneuerbarer Energieanlagen und der Elektromobilit{\"a}t sowie durch den Netzausbau bei {\"U}bertragungs- und Verteilungsnetzbetreibern. Es bedarf somit angepasster Netzbetriebs- und Netzplanungskonzepte f{\"u}r ein technisch effizientes und wirtschaftlich g{\"u}nstiges Blindleistungsmanagement. Dieser Beitrag besch{\"a}ftigt sich damit, Prozessans{\"a}tze und Methodiken f{\"u}r ebendieses in der Netzplanung aufzuzeigen, um erforderliche Blindleistungskapazit{\"a}ten unter minimalen Gesamtkostenaufwand und unter Ber{\"u}cksichtigung einer effizienten Blindleistungsbedarfsdeckung zu bestimmen. Dabei liegt der Fokus verst{\"a}rkt in der Bedarfsanalyse.}, language = {de} } @inproceedings{SchweibererRauchBrueckl, author = {Schweiberer, Philipp and Rauch, Johannes and Br{\"u}ckl, Oliver}, title = {Entwicklung eines Regelkonzeptes f{\"u}r einen optimierten Blindleistungsabruf auf Basis von Blindleistungspotentialanalysen bei Industriebetrieben im Mittelspannungsnetz}, series = {Tagungsband Tagung Zuk{\"u}nftige Stromnetze 26./27. Januar 2022 (online)}, booktitle = {Tagungsband Tagung Zuk{\"u}nftige Stromnetze 26./27. Januar 2022 (online)}, publisher = {Conexio-PSE GmbH}, address = {Pforzheim}, isbn = {978-3-948176-16-7}, doi = {10.35096/othr/pub-5870}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-58704}, pages = {224 -- 233}, abstract = {Im Zuge der Energiewende ergibt sich ein Wandel in der Struktur des Elektrizit{\"a}tsversorgungsnetzes. Die Verschiebung der Erzeugungsleistung von konventionellen Großkraftwerken in h{\"o}heren Netzebenen hin zu dezentralen erneuerbaren Energieanlagen in niedrigeren Netzebenen resultiert sowohl in bidirektionalen Lastfl{\"u}ssen als auch in schwankenden Einspeisecharakteristiken. Des Weiteren folgen durch den Wegfall von Großkraftwerken als Blindleistungsquellen Leistungsdefizite in der {\"U}bertragungsnetzebene, die kompensiert werden m{\"u}ssen. Daraus resultieren Herausforderungen an einen sicheren und zuverl{\"a}ssigen Betrieb der Verteil- und {\"U}bertragungsnetze. Neue Konzepte m{\"u}ssen f{\"u}r die Erbringung von Blindleistung entwickelt werden, es soll mehr Blindleistung aus dem Verteilungsnetz zur Verf{\"u}gung gestellt werden, um die Systemstabilit{\"a}t zu wahren. Im Rahmen des Projektes Q-Integral wird das Thema „Blindleistung" (Q) ganzheitlich untersucht. Es werden dazu verschiedene Erbringungsoptionen f{\"u}r Blindleistung hinsichtlich technischer und wirtschaftlicher Potentiale untersucht, die in ein funktionales und effizientes Blindleistungsmanagement eingebracht werden. Die Untersuchungsans{\"a}tze daf{\"u}r sind sowohl spannungsebenen-{\"u}bergreifend als auch netzbetreiber-{\"u}bergreifend. Ein Ansatzpunkt des Projektes ist die Betrachtung der Blindleistungsbereitstellung von Industriebetrieben. Dazu wird das Potential von Betrieben, die an das Verteilnetz angeschlossen sind und Blindleistung durch Kompensations- oder Erzeugungsanlagen bereitstellen k{\"o}nnen, untersucht. Ziel ist es, das gesicherte und maximale induktive sowie kapazitive Potential zu bestimmen. Das gesicherte kapazitive Potential kann genutzt werden, um Aussagen dar{\"u}ber zu treffen, wie stark dem Spannungsfall im vorgelagerten Netz zu Starklastzeiten entgegengewirkt werden kann. Anhand des gesicherten induktiven Potentials kann ein Spannungsanstieg w{\"a}hrend Schwachlastzeiten ausgeglichen werden kann. In diesem Beitrag werden Ergebnisse aus dem Projekt Q-Integral vorgestellt. Dazu werden zuerst die Berechnungsgrundlagen der induktiven und kapazitiven Blindleistungspotentiale aufgezeigt und die Ergebnisse der Berechnungen vorgestellt. Die gewonnen Ergebnisse entstammen aus Messungen an einem Industriebetrieb mit Blindleistungskompensationsanlagen (BKA), den entsprechenden Reglern der Anlagen und einer installierten Kompensationsleistung von 1600 kvar. Sowohl die Lastg{\"a}nge als auch das Schaltverhalten der einzelnen Kompensationsanlagen liegen den Berechnungen zugrunde. Um den Austausch der Blindleistung an der {\"U}bergabestelle des Betriebs zum Mittelspannungsnetz netzdienlich einzustellen, bedarf es eines geeigneten Regelkonzepts, das neben den BKAs auch weitere Q-Quellen ber{\"u}cksichtigt. Deshalb wird abschließend ein Regelkonzept vorgestellt, das den technisch-optimierten Blindleistungsabruf unter Ber{\"u}cksichtigung mehrerer Blindleistungsquellen behandelt.}, language = {de} } @inproceedings{RauchBruecklEngel, author = {Rauch, Johannes and Br{\"u}ckl, Oliver and Engel, Bernd}, title = {Analysis and optimization of the steady state voltage deviation demand for reactive power planning using installed reactive power sources}, series = {NEIS 2022; Conference on Sustainable Energy Supply and Energy Storage Systems, 26-27 September 2022, Hamburg}, booktitle = {NEIS 2022; Conference on Sustainable Energy Supply and Energy Storage Systems, 26-27 September 2022, Hamburg}, editor = {Schulz, Detlef}, publisher = {VDE-Verlag}, address = {Berlin}, isbn = {978-3-8007-5983-5}, issn = {2510-6902}, pages = {175 -- 182}, abstract = {The provision of reactive power is one option for maintaining the grid voltage, that is defined as an ancillary service in Germany. This paper presents an approach for determining deficient voltage deviation demands within an electrical grid for long term reactive power planning investigations. In contrast to previous approaches, which evaluate the Q-behavior of extended ward elements or grid assets, voltage deviations are analyzed bus-specifically. So further reactive power planning investigations are able to scale and optimize additional reactive power sources directly on planning voltage limits using load flow sensitivity techniques. The focus lies on the analysis of the steady state demand at base case conditions. Therefore, a grid planning process is conceptualized. An optimal power flow algorithm based on Differential Evolution is used for an optimal reactive power dispatch of installed reactive power sources, e. g. reactive power compensation systems or (renewable) energy sources to minimize the total voltage deviation according to voltage limits of Transmission System Operators planning principles. Methodological and processuals specifications as well as an application use case with an exemplary transmission system are presented in this paper.}, language = {en} } @inproceedings{SchweibererRauchBrueckl, author = {Schweiberer, Philipp and Rauch, Johannes and Br{\"u}ckl, Oliver}, title = {Long-term analysis of industrial reactive power potentials with consideration of plant-internal grid restrictions using the example of an industrial plant in a distribution grid}, series = {NEIS 2022; Conference on Sustainable Energy Supply and Energy Storage Systems, 26-27 September 2022, Hamburg}, booktitle = {NEIS 2022; Conference on Sustainable Energy Supply and Energy Storage Systems, 26-27 September 2022, Hamburg}, editor = {Schulz, Detlef}, publisher = {VDE-Verlag}, address = {Berlin}, isbn = {978-3-8007-5983-5}, issn = {2510-6902}, pages = {51 -- 56}, abstract = {Since conventional generation plants provide a considerable share of reactive power but are gradually being shut down due to energy transition, leading to power deficits at the transmission grid level, new concepts for the supply of reactive power must be developed. As one possibility for the latter, industrial plants in the distribution grid are considered suitable, as their reactive power potentials can contribute to voltage maintenance and thus to a grid- or system-serving behavior. In this paper, the determination of reactive power potentials provided by industrial compensation systems (ICS) is presented. An industrial plant in the medium voltage grid, with three installed ICSs, is investigated. The potentials are determined and described based on their time characteristics, which provide information about the occurrence and distribution of inductive and capacitive potentials. A grid simulation of the investigated industrial grid is used to analyze the effects of retrieving the reactive power potentials regarding equipment utilizations and voltage limits.}, language = {en} } @misc{ReindlErikssonNiemetzetal., author = {Reindl, Andrea and Eriksson, Lars and Niemetz, Michael and Sangyoung, Park and Meier, Hans}, title = {Control Concepts for a Decentralized Battery Management System Decentralized Battery Management System Global Control Level}, series = {16th International Renewable Energy Storage Conference (IRES2022), 20 to 22 September 2022, D{\"u}sseldorf}, journal = {16th International Renewable Energy Storage Conference (IRES2022), 20 to 22 September 2022, D{\"u}sseldorf}, publisher = {Eurosolar}, language = {en} } @inproceedings{KoernerReindlMeieretal., author = {K{\"o}rner, Patrick and Reindl, Andrea and Meier, Hans and Niemetz, Michael}, title = {A Theoretical Comparison of Different Virtual Synchronous Generator Implementations on Inverters}, series = {2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe): 05-09 September 2022, Hannover, Germany}, booktitle = {2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe): 05-09 September 2022, Hannover, Germany}, publisher = {IEEE}, pages = {9}, abstract = {The goal to overcome the global climate crisis leads to a rising demand for the usage of Renewable Energy Sources (RES). Decentralized control strategies are needed to allow the integration of RES into the grid. The Virtual Synchronous Generator (VSG) is proposed as a method to add virtual inertia to the grid by emulating the rotating mass of a Synchronous Generator (SG) on the control algorithm of an inverter. This paper presents the VSG control structure as well as the mathematical description in a unified form. Due to the fact that classical droop control can be seen as a special form of the VSG, their correlation is highlighted by evaluating the steady state output characteristics of the inverter. Furthermore, a theoretical comparison between different VSG topologies, including the VISMA-Method 2 and the synchronverter, is given. In order to achieve better voltage stability, principles to add virtual impedance to the inverter's output are described.}, language = {en} } @article{SchaechingerBruecklBeckeretal., author = {Sch{\"a}chinger, J. and Br{\"u}ckl, Oliver and Becker, Mark and Lechner, Raphael}, title = {Results of the Research Project Optibiosy: Biogas plants as stabilizers of the power system?}, series = {BWK ENERGIE}, volume = {74}, journal = {BWK ENERGIE}, number = {11-12}, publisher = {VDI-Verlag}, address = {D{\"u}sseldorf}, issn = {1436-4883}, pages = {34 -- 39}, language = {en} } @techreport{KlitsmanStaudacherBrueckletal., author = {Klitsman, Maksym and Staudacher, Lars and Br{\"u}ckl, Oliver and Eller, Johannes and Brey, Ludwig and Eigenstetter, Florian}, title = {neos - NetzEntwicklungsOffensive Strom - Schlussbericht}, doi = {10.35096/othr/pub-4524}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-45248}, pages = {143}, abstract = {Im Zuge der Energiewende werden die erneuerbaren Energien zur tragenden S{\"a}ule unserer Stromversorgung. Bis 2025 sollen bundesweit 40-45 \% des Stroms aus erneuerbaren Quellen stammen, bis 2050 sogar 80 \%. Dabei wird der erzeugte Strom haupts{\"a}chlich aus Wind und Sonne stammen. Im Norden der Bundesrepublik wird Wind die Erzeugung dominieren, w{\"a}hrend im S{\"u}den, insbesondere in Bayern der Strom vornehmlich aus Photovoltaik gewonnen werden wird. Um die Ziele der Energiewende zu erreichen, wird neben den ausreichenden Erzeugungskapazit{\"a}ten auch eine leistungsf{\"a}hige Infrastruktur zur Verteilung und Nutzung des erneuerbaren Stroms notwendig sein. Planbarkeit und Sicherung der Versorgungsqualit{\"a}t bei zunehmenden Anteilen von volatiler Erzeugung werden dabei zu einer immer gr{\"o}ßeren Herausforderung. Das Projekt neos hat im engen Verbund mit den beteiligten Partnern wichtige tagesaktuelle Fragestellungen wissenschaftlich er{\"o}rtert und untersucht, die sich durch die laufende Transformation des Energiesystems und den rasanten Ausbau der Anlagen zur erneuerbaren Energieerzeugung den Projektpartnern stellen.}, subject = {Intelligentes Stromnetz}, language = {de} } @article{GamischHuberGadereretal., author = {Gamisch, Bernd and Huber, Lea and Gaderer, Matthias and Dawoud, Belal}, title = {On the Kinetic Mechanisms of the Reduction and Oxidation Reactions of Iron Oxide/Iron Pellets for a Hydrogen Storage Process}, series = {Energies}, volume = {15}, journal = {Energies}, number = {21}, publisher = {MDPI}, doi = {10.3390/en15218322}, abstract = {This work aims at investigating the kinetic mechanisms of the reduction/oxidation (redox) reactions of iron oxide/iron pellets under different operating conditions. The reaction principle is the basis of a thermochemical hydrogen storage system. To simulate the charging phase, a single pellet consisting of iron oxide (90\% Fe2O3, 10\% stabilising cement) is reduced with different hydrogen (H2) concentrations at temperatures between 600 and 800 °C. The discharge phase is initiated by the oxidation of the previously reduced pellet by water vapour (H2O) at different concentrations in the same temperature range. In both reactions, nitrogen (N2) is used as a carrier gas. The redox reactions have been experimentally measured in a thermogravimetric analyser (TGA) at a flow rate of 250 mL/min. An extensive literature review has been conducted on the existing reactions' kinetic mechanisms along with their applicability to describe the obtained results. It turned out that the measured kinetic results can be excellently described with the so-called shrinking core model. Using the geometrical contracting sphere reaction mechanism model, the concentration- and temperature-dependent reduction and oxidation rates can be reproduced with a maximum deviation of less than 5\%. In contrast to the reduction process, the temperature has a smaller effect on the oxidation reaction kinetics, which is attributed to 71\% less activation energy (Ea,Re=56.9 kJ/mol versus Ea,Ox=16.0 kJ/mol). The concentration of the reacting gas showed, however, an opposite trend: namely, to have an almost twofold impact on the oxidation reaction rate constant compared to the reduction rate constant.}, language = {en} } @inproceedings{ArrietaCastroRill, author = {Arrieta Castro, Abel and Rill, Georg}, title = {Kinematic Versus Elasto-Kinematic Model of a Twistbeam Suspension}, series = {Advances in Dynamics of Vehicles on Roads and Tracks II, proceedings of the 27th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2021): August 17-19, 2021, Saint Petersburg, Russia}, booktitle = {Advances in Dynamics of Vehicles on Roads and Tracks II, proceedings of the 27th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2021): August 17-19, 2021, Saint Petersburg, Russia}, editor = {Orlova, Anna and Cole, David}, publisher = {Springer Nature}, doi = {10.1007/978-3-031-07305-2_59}, pages = {505 -- 605}, abstract = {The Twistbeam axle suspension is a cheap and robust layout for rear axles at front wheel driven midsize cars. Appropriate models have to take the elastic deformation of the torsion beam into account. A Finite Element approach requires detailed informations of the material properties and the shape which are usually only available in the final production stage. This paper presents a lumped mass model which can easily be integrated into a multibody vehicle model and can be used in the early stage of development. An approximation by the design kinematics further reduces the complexity of the model and considers only the kinematic properties of the Twistbeam suspension. Simulations using a nonlinear and three-dimensional vehicle model with different maneuvers, such as steady-state cornering, step steer input, and driving straight ahead on random road, demonstrate the performance and, in particular, the difference of the presented Twistbeam suspension models.}, language = {en} } @inproceedings{BuenteRillRuggaberetal., author = {B{\"u}nte, Tilman and Rill, Georg and Ruggaber, Julian and Tobol{\´a}ř, Jakub}, title = {Modelling and Validation of the TMeasy Tyre Model for Extreme Parking Manoeuvres}, series = {Advances in Dynamics of Vehicles on Roads and Tracks II, Proceedings of the 27th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2021): August 17-19, 2021, Saint Petersburg, Russia}, booktitle = {Advances in Dynamics of Vehicles on Roads and Tracks II, Proceedings of the 27th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2021): August 17-19, 2021, Saint Petersburg, Russia}, editor = {Orlova, Anna and Cole, David}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-07305-2}, doi = {10.1007/978-3-031-07305-2_94}, pages = {1015 -- 1025}, abstract = {The TMeasy is a tyre model suitable for vehicle handling analyses and enables easy parametrisation. Recently, a convenient interface to Modelica was implemented by DLR to support the TMeasy also for vehicle modelling in multi-physical domains. This paper focuses especially on the particular problem of reliable reproduction of the tyre's bore torque which occurs during parking manoeuvres. It outlines the theory behind it, discusses the Modelica interface implementation, and presents the results of parameter identification which were achieved based on real experiments with DLR's research platform ROboMObil.}, language = {en} } @inproceedings{Rill, author = {Rill, Georg}, title = {A Three-Dimensional and Nonlinear Virtual Test Car}, series = {ENOC 2022, book of abstracts, 10th European Nonlinear Dynamics Conference: July 17-22, 2022, Lyon, France}, booktitle = {ENOC 2022, book of abstracts, 10th European Nonlinear Dynamics Conference: July 17-22, 2022, Lyon, France}, address = {Lyon}, pages = {49 -- 58}, abstract = {Virtual testing procedures have become a standard in vehicle dynamics. The increasing complexity of driver assistance sys- tems demand for more and more virtual tests, which are supposed to produce reliable results even in the limit range. As a consequence, simplified vehicle models, like the classical bicycle model or 4-wheel vehicle models, have to be replaced by a fully three-dimensional and nonlinear vehicle model, which also encompasses the details of the suspension systems. This paper presents a passenger car model, where the chassis, the four knuckles, and the four wheels are described by rigid bodies, the suspension system is modeled by the generic design kinematics, and the TMeasy tire model provides the tire forces and torques in all driving situations.}, language = {en} }