@article{BringoutErbFrikel, author = {Bringout, Ga{\"e}l and Erb, Wolfgang and Frikel, J{\"u}rgen}, title = {A new 3D model for Magnetic Particle Imaging using realistic magnetic field topologies for algebraic reconstruction}, series = {Inverse Problems}, volume = {36}, journal = {Inverse Problems}, number = {12}, publisher = {IOP Publishing}, doi = {10.1088/1361-6420/abb446}, abstract = {We derive a new 3D model for magnetic particle imaging (MPI) that is able to incorporate realistic magnetic fields in the reconstruction process. In real MPI scanners, the generated magnetic fields have distortions that lead to deformed magnetic low-field volumes with the shapes of ellipsoids or bananas instead of ideal field-free points (FFP) or lines (FFL), respectively. Most of the common model-based reconstruction schemes in MPI use however the idealized assumption of an ideal FFP or FFL topology and, thus, generate artifacts in the reconstruction. Our model-based approach is able to deal with these distortions and can generally be applied to dynamic magnetic fields that are approximately parallel to their velocity field. We show how this new 3D model can be discretized and inverted algebraically in order to recover the magnetic particle concentration. To model and describe the magnetic fields, we use decompositions of the fields in spherical harmonics. We complement the description of the new model with several simulations and experiments, exploring the effects of magnetic fields distortion and reconstruction parameters on the reconstruction.}, language = {en} } @article{KeimParedesNonnetal., author = {Keim, Vincent and Paredes, Marcelo and Nonn, Aida and M{\"u}nstermann, Sebastian}, title = {FSI-simulation of ductile fracture propagation and arrest in pipelines}, series = {International Journal of Pressure Vessels and Piping}, volume = {182}, journal = {International Journal of Pressure Vessels and Piping}, number = {May}, publisher = {Elsevier}, doi = {10.1016/j.ijpvp.2020.104067}, abstract = {The fracture propagation and arrest control for pipelines transporting rich natural gases and high vapor pressure liquids is based on the Battelle Two-Curve Model (BTCM). Distinct limitations of this model were demonstrated for past and modern steels and gas mixtures. These can be related to the insufficient description of individual physical processes and interactions between the pipe material and transported mixture during the running ductile fracture. In the past, fluid-structure interaction (FSI) models enabled a more sophisticated, coupled analysis of the failure scenario. To quantify their capability of describing the multi-physical processes, the FSI models need to be verified by experimental data from full-scale burst tests (FSBT). Therefore, this paper deals with the simulation of five FSBTs from the literature on API grade X65 pipes with different pipe geometries, mixtures and initial conditions. The FSI is modeled by the coupled Euler-Lagrange (CEL) method. The modified Mohr-Coulomb (MMC) model is implemented in the CEL framework to describe the deformation and ductile fracture in the X65/L450 pipes. 3D Euler equations are used to calculate the mixture decompression with the GERG-2008 equation of state defining the volumetric behavior of a CO2-rich mixture, CH4 and H2. The extended model considers the effect of soil backfill on the pipe deformation and inertia. The numerical predictions agree well with the experimental findings in terms of the crack propagation speed and arrest length underlining the capability of the developed numerical tool.}, subject = {Bruchmechanik}, language = {en} } @techreport{RankHeberlSterner, author = {Rank, Daniel and Heberl, Michael and Sterner, Michael}, title = {Die CO2-Bilanz der OTH [Ostbayerischen Technische Hochschule Regenburg]}, language = {de} } @inproceedings{RillButzRill, author = {Rill, Daniel and Butz, Christiane and Rill, Georg}, title = {Dynamic Interaction of Heavy Duty Vehicles and Expansion Joints}, series = {Multibody Dynamics 2019, Proceedings of the 9th ECCOMAS Thematic Conference on Multibody Dynamics}, volume = {53}, booktitle = {Multibody Dynamics 2019, Proceedings of the 9th ECCOMAS Thematic Conference on Multibody Dynamics}, editor = {Kecskem{\´e}thy, Andr{\´e}s and Geu Flores, Francisco}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-030-23131-6}, doi = {10.1007/978-3-030-23132-3_56}, pages = {471 -- 478}, abstract = {The "Smart Bridge (Intelligente Br{\"u}cke)" project cluster, initiated by the German Federal Highway Research Institute (Bundesanstalt f{\"u}r Straßenwesen, BASt) and the Federal Ministry of Transport and Digital Infrastructure (BMVI), focuses on "smart" monitoring devices that allow an efficient and economic maintenance management of bridge infrastructures. Among the participating projects, the one presented herein focuses on the development of a smart expansion joint, to assess the traffic parameters on site. This is achieved by measuring velocity and weight of crossing vehicles. In reference measurements, performed with a three-axle truck and a typical tractor semi-trailer combination with five axles in total, it was shown that the interaction between the vehicle and the expansion joint is highly dynamic and depends on several factors. To get more insight into this dynamic problem, a virtual test rig was set up. Although nearly all vehicle parameters had to be estimated, the simulation results conform very well with the measurements and are robust to vehicle parameter variations. In addition, they indicate a significant influence of the expansion joint dynamic to the peak values of the measured wheel loads, in particular on higher driving velocities. By compensating the relevant dynamic effects in the measurements, a "smart" data processing algorithm makes it possible to determine the actual vehicle weights in random traffic with reliability and appropriate accuracy.}, language = {en} } @inproceedings{RillArrietaCastro, author = {Rill, Georg and Arrieta Castro, Abel}, title = {A Novel Approach for Parametrization of Suspension Kinematics}, series = {Advances in Dynamics of Vehicles on Roads and Tracks: Proceedings of the 26th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2019), August 12-16, 2019, Gothenburg, Sweden}, booktitle = {Advances in Dynamics of Vehicles on Roads and Tracks: Proceedings of the 26th Symposium of the International Association of Vehicle System Dynamics (IAVSD 2019), August 12-16, 2019, Gothenburg, Sweden}, editor = {Klomp, Matthijs and Bruzelius, Fredrik and Nielsen, Jens and Hillemyr, Angela}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-030-38076-2}, doi = {10.1007/978-3-030-38077-9_210}, pages = {1848 -- 1857}, abstract = {n the automotive industry, simulations are needed to analyse the dynamics of vehicles and also of its main components and subsystems, e.g. tires, brakes and suspension systems. These simulations are required for an early-stage development and in consequence, they must deliver realistic results. Suspension systems plays a key role in comfort and safety of road vehicles. They usually consist of rigid links and force elements that are arranged with a specific topology. In addition, some of their functionalities are to carry the weight of the car and the passengers, and maintain a correct wheel alignment. In simulations involving suspension systems, lookup-tables are frequently used. They are obtained from a Kinematic and Compliance (KnC) test and then standardized for a specific vehicle simulation software. Nonetheless, lookup-tables require a reasonable number of characteristic points. Additionally, derivatives, interpolation, and extrapolation are not necessarily smooth. This produces results that depend on the interpolation technique and may be inaccurate. In this paper, a novel method called "design kinematics" is proposed. This method can describe the kinematic properties of almost any type of suspension systems. Comparisons with an analytic calculation and a KnC measurement shown that the design kinematics is able to represent the kinematic and compliance properties of suspension systems extremely well and very efficiently.}, language = {en} } @inproceedings{Rill, author = {Rill, Georg}, title = {TMeasy 6.0-A handling tire model that incorporates the first two belt eigenmodes}, series = {Proceedings of the XI International Conference on Structural Dynamics (EURODYN 2020): Athens, Greece, 23.11.2020 - 26.11.2020}, booktitle = {Proceedings of the XI International Conference on Structural Dynamics (EURODYN 2020): Athens, Greece, 23.11.2020 - 26.11.2020}, publisher = {EASD Procedia}, doi = {10.47964/1120.9054.18673}, pages = {676 -- 689}, abstract = {TMeasy 6.0, an extension to the standard TMeasy tire model of version 5.3, takes the relevant first two rigid body eigenmodes of the belt into consideration. These modes represent the in plane longitudinal and rotational movements of the belt relative to the rim. The dynamics of the longitudinal force is of higher order then and reproduces the tire wheel vibrations, required for indirect tire-pressure monitoring systems (iTPMS), sufficiently well. A tailored implicit solver, which takes the stiff coupling between the longitudinal force and the belt motions into account, still provides real-time performance in addition. Simulation examples show that a rigid body vehicle model equipped with TMeasy 6.0 makes it possible to investigate second generation indirect tire-pressure monitoring systems.}, language = {en} } @book{RillArrietaCastro, author = {Rill, Georg and Arrieta Castro, Abel}, title = {Road Vehicle Dynamics}, publisher = {CRC Press}, address = {Boca Raton, Fla.}, isbn = {9780429244476}, doi = {10.1201/9780429244476}, abstract = {Road Vehicle Dynamics: Fundamentals and Modeling with MATLAB®, Second Edition combines coverage of vehicle dynamics concepts with MATLAB v9.4 programming routines and results, along with examples and numerous chapter exercises. Improved and updated, the revised text offers new coverage of active safety systems, rear wheel steering, race car suspension systems, airsprings, four-wheel drive, mechatronics, and other topics. Based on the lead author's extensive lectures, classes, and research activities, this unique text provides readers with insights into the computer-based modeling of automobiles and other ground vehicles. Instructor resources, including problem solutions, are available from the publisher.}, subject = {Fahrdynamik}, language = {en} } @inproceedings{KetterlHeinrichReitmeieretal., author = {Ketterl, Hermann and Heinrich, Tobias and Reitmeier, Torsten and Hoelscher, Clemens}, title = {Emissionsabh{\"a}ngige Leistungsregelung f{\"u}r BHKW's}, series = {Tagungsband AALE 2020: Automatisierung und Mensch-Technik-Interaktion, 17. Fachkonferenz, 4. bis 6. M{\"a}rz 2020, Leipzig}, volume = {2020}, booktitle = {Tagungsband AALE 2020: Automatisierung und Mensch-Technik-Interaktion, 17. Fachkonferenz, 4. bis 6. M{\"a}rz 2020, Leipzig}, editor = {J{\"a}kel, Jens and Thiel, Robert}, publisher = {VDE-Verlag}, isbn = {978-3-8007-5180-8}, pages = {7}, language = {de} } @article{BruniMeijaardRilletal., author = {Bruni, S. and Meijaard, J. P. and Rill, Georg and Schwab, A. L.}, title = {State-of-the-art and challenges of railway and road vehicle dynamics with multibody dynamics approaches}, series = {Multibody System Dynamics}, volume = {49}, journal = {Multibody System Dynamics}, number = {1}, publisher = {Springer}, doi = {10.1007/s11044-020-09735-z}, pages = {1 -- 32}, abstract = {A review of the current use of multibody dynamics methods in the analysis of the dynamics of vehicles is given. Railway vehicle dynamics as well as road vehicle dynamics are considered, where for the latter the dynamics of cars and trucks and the dynamics of single-track vehicles, in particular motorcycles and bicycles, are reviewed. Commonalities and differences are shown, and open questions and challenges are given as directions for further research in this field.}, language = {en} } @article{MikhaeilGadererDawoud, author = {Mikhaeil, Makram and Gaderer, Matthias and Dawoud, Belal}, title = {On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study}, series = {Energy}, volume = {207}, journal = {Energy}, number = {September}, publisher = {Elsevier}, doi = {10.1016/j.energy.2020.118272}, pages = {1 -- 13}, abstract = {An innovative adsorber plate heat exchanger (APHE), which is developed for application in adsorption heat pumps, chillers and thermal energy storage systems, is introduced. A test frame has been constructed as a representative segment of the introduced APHE for applying loose grains of AQSOA-Z02. Adsorption kinetic measurements have been carried out in a volumetric large-temperature-jump setup under typical operating conditions of adsorption processes. A transient 2-D model is developed for the tested sample inside the setup. The measured temporal uptake variations with time have been fed to the model, through which a micro-pore diffusion coefficient at infinite temperature of 2 E-4 [m2s-1] and an activation energy of 42.1 [kJ mol-1] have been estimated. A 3-D model is developed to simulate the combined heat and mass transfer inside the APHE and implemented in a commercial software. Comparing the obtained results with the literature values for an extruded aluminium adsorber heat exchanger coated with a 500 μm layer of the same adsorbent, the differential water uptake obtained after 300 s of adsorption (8.2 g/100 g) implies a sound enhancement of 310\%. This result proves the great potential of the introduced APHE to remarkably enhance the performance of adsorption heat transformation appliances.}, language = {en} } @article{MetschSchmidtSindersbergeretal., author = {Metsch, P. and Schmidt, H. and Sindersberger, Dirk and Kalina, K. A. and Brummund, J. and Auernhammer, G{\"u}nter and Monkman, Gareth J. and K{\"a}stner, Markus}, title = {Field-Induced Interactions in Magneto-Active Elastomers}, series = {Smart Materials and Structures}, volume = {29}, journal = {Smart Materials and Structures}, number = {8}, publisher = {IOPscience}, doi = {10.1088/1361-665X/ab92dc}, pages = {1 -- 10}, abstract = {In this contribution, field-induced interactions of magnetizable particles embedded into a soft elastomer matrix are analyzed with regard to the resulting mechanical deformations. By comparing experiments for two-, three- and four-particle systems with the results of finite element simulations, a fully coupled continuum model for magneto-active elastomers is validated with the help of real data for the first time. The model under consideration permits the investigation of magneto-active elastomers with arbitrary particle distances, shapes and volume fractions as well as magnetic and mechanical properties of the individual constituents. It thus represents a basis for future studies on more complex, realistic systems. Our results show a very good agreement between experiments and numerical simulations—the deformation behavior of all systems is captured by the model qualitatively as well as quantitatively. Within a sensitivity analysis, the influence of the initial particle positions on the systems' response is examined. Furthermore, a comparison of the full three-dimensional model with the often used, simplified two-dimensional approach shows the typical overestimation of resulting interactions in magneto-active elastomers.}, language = {en} } @inproceedings{FrauenschlaegerDentgenMottok, author = {Frauenschl{\"a}ger, Tobias and Dentgen, Manuel and Mottok, J{\"u}rgen}, title = {Systemarchitektur eines Sicherheitsmoduls im Energiesektor}, series = {Tagungsband 2. Symposium Elektronik und Systemintegration ESI 2020: "Intelligente Systeme und ihre Komponenten: Forschung und industrielle Anwendung"}, booktitle = {Tagungsband 2. Symposium Elektronik und Systemintegration ESI 2020: "Intelligente Systeme und ihre Komponenten: Forschung und industrielle Anwendung"}, address = {Landshut}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:860-opus4-2092}, pages = {29 -- 38}, abstract = {Aufgrund der immer weiter anwachsenden Vernetzung der Stromnetze wird die Kommunikation zwischen der Leitstelle des Energieversorgers und den Infrastrukturkomponenten innerhalb eines Umspannwerks immer bedeutsamer. Dabei werden sowohl Steuerbefehle als auch Daten f{\"u}r {\"U}berwachungsfunktionen {\"u}bertragen. In den aktuellen Netzwerkarchitekturen findet diese Kommunikation ohne eine kryptografische Absicherung statt, was einen Angriffspunkt f{\"u}r gezielte Attacken und damit eine potenzielle Gef{\"a}hrdung der Energieversorgung darstellt. Um solchen Angriffen in Zukunft entgegenzuwirken, wird das ES³M-Sicherheitsmodul entwickelt. Dieses soll in das Netzwerk zwischen den beiden Kommunikationspartnern eingesetzt werden und so den Datenverkehr absichern. Mithilfe einer Bedrohungsanalyse wurden Anforderungen abgeleitet, die neben kryptografischen Maßnahmen auch Themen wie funktionale Sicherheit und Langlebigkeit umfassen. Um diese zu erf{\"u}llen, wurde eine spezielle Systemarchitektur auf Basis einer Aufgabenteilung entworfen. Diese Architektur und korrespondierende Designentscheidungen werden pr{\"a}sentiert.}, language = {de} } @inproceedings{MuehlbauerRablRottengruber, author = {M{\"u}hlbauer, Christian and Rabl, Hans-Peter and Rottengruber, Hermann}, title = {Akustische Analyse und Optimierung von mechatronischen Kraftstoffeinspritzsystemen}, series = {Tagungsband DAGA 2019 - 45. Jahrestagung f{\"u}r Akustik, 18.-21. M{\"a}rz 2019, Rostock}, booktitle = {Tagungsband DAGA 2019 - 45. Jahrestagung f{\"u}r Akustik, 18.-21. M{\"a}rz 2019, Rostock}, publisher = {Deutsche Gesellschaft f{\"u}r Akustik}, address = {Berlin}, isbn = {978-3-939296-14-0}, pages = {647 -- 650}, language = {de} } @inproceedings{SchneiderHotsLuftetal., author = {Schneider, Sebastian and Hots, Jan and Luft, Tommy and Rottengruber, Hermann and Verhey, Jesko L. and Rabl, Hans-Peter}, title = {Entwicklung einer empirischen Formel zur Bewertung der Tickerger{\"a}uschanteile von Motorger{\"a}uschen}, series = {DAGA 2019 - 45. Jahrestagung f{\"u}r Akustik, 8.-21. M{\"a}rz 2019, Rostock}, volume = {45}, booktitle = {DAGA 2019 - 45. Jahrestagung f{\"u}r Akustik, 8.-21. M{\"a}rz 2019, Rostock}, publisher = {Deutsche Gesellschaft f{\"u}r Akustik e.V.}, isbn = {978-3-939296-14-0}, pages = {643 -- 646}, language = {de} } @inproceedings{RiegerMuehlbauerWeberetal., author = {Rieger, Anna and M{\"u}hlbauer, Christian and Weber, Rainer and Rabl, Hans-Peter}, title = {Measures to Address the Dissonance Perception of Multiple Tonal Components in Sounds}, series = {DAGA 2019 - 45. Jahrestagung f{\"u}r Akustik, 18.-21. M{\"a}rz 2019, Rostock}, volume = {45}, booktitle = {DAGA 2019 - 45. Jahrestagung f{\"u}r Akustik, 18.-21. M{\"a}rz 2019, Rostock}, publisher = {Deutsche Gesellschaft f{\"u}r Akustik e.V.}, pages = {375 -- 378}, language = {en} } @misc{SchwanzerDietrichGadereretal., author = {Schwanzer, Peter and Dietrich, Markus and Gaderer, Matthias and Rabl, Hans-Peter}, title = {Monitoring von Partikelfiltern f{\"u}r den Einsatz in Fahrzeugen mit direkt- einspritzenden Ottomotoren mit einer Radio-Frequenz (RF-) Antenne}, series = {Kolloquium des Bayerischen Wissenschaftsforum}, journal = {Kolloquium des Bayerischen Wissenschaftsforum}, language = {de} } @misc{SchwanzerDietrichHaftetal., author = {Schwanzer, Peter and Dietrich, Markus and Haft, Gerhard and Gaderer, Matthias and Rabl, Hans-Peter}, title = {Oxidation Kinetics Determination of GDI Engine Soot by a Radio-Frequency Sensor}, series = {23rd Conference on Combustion Generated Nanoparticles 2019, June 17-20, Z{\"u}rich, Switzerland}, journal = {23rd Conference on Combustion Generated Nanoparticles 2019, June 17-20, Z{\"u}rich, Switzerland}, language = {en} } @article{SindersbergerPremMonkman, author = {Sindersberger, Dirk and Prem, Nina and Monkman, Gareth J.}, title = {Self-assembling structure formation in low-density magnetoactive polymers}, series = {Journal of Applied Polymer Science}, volume = {137}, journal = {Journal of Applied Polymer Science}, number = {3}, publisher = {Wiley}, doi = {10.1002/app.48291}, abstract = {The formation of microstructures in magnetoactive polymers (MAPs) is a recently discovered phenomenon found only with very low filler particle concentrations (less than 3 wt \%). Due to the degassing process, filler particles collect around an ascending bubble, which dissolves at a certain point leaving particulate rings within the matrix. The formation of toroidal microstructures commences as filler concentration approaches 1 wt \%. The development of coherent parallel aligned rings with a compact order continues as particle concentrations increase toward 2 wt \%. Between 2 and 3 wt \% capillary doublets develop, while mass percentages higher than 3\% result in increasing entropy as the random order of particle agglomeration found in higher concentration MAP dominates. Self-structured samples of different filler material and concentrations between 1 and 3 wt \% have been investigated using X-ray tomography, where the emerging structures can be observed and visualized. The ring structures resulting from this research represent microinductivities which can be fabricated in a targeted manner, thus enabling new applications in the high-frequency radio field. Furthermore, these anisotropic, but well-organized, structures have magnetic field-dependent implications for optical, thermal, acoustic, and medical applications.}, language = {en} } @inproceedings{ReindlMeierNiemetz, author = {Reindl, Andrea and Meier, Hans and Niemetz, Michael}, title = {Software Framework for the Simulation of a Decentralized Battery Management System Consisting of Intelligent Battery Cells}, series = {2019 IEEE Student Conference on Research and Development (SCOReD), 15-17 Oct. 2019, Bandar Seri Iskandar, Malaysia}, booktitle = {2019 IEEE Student Conference on Research and Development (SCOReD), 15-17 Oct. 2019, Bandar Seri Iskandar, Malaysia}, doi = {10.1109/SCORED.2019.8896284}, pages = {75 -- 80}, abstract = {Conventional battery management systems typically adopt hierarchical master-slave architectures. With regard to an uninterruptible power supply, the most significant disadvantage of central structures is the dependency of the errorfree function of the superior master board. The decentralized battery management system presented in this paper, consisting of consumers, generators and intelligent battery cells, is controlled without any central coordination authority. For this purpose, an intelligent control algorithm and a leader election algorithm are implemented on the microcontrollers of the battery cells. To test different control and election strategies, a software framework is presented for the complete simulation of the decentralized battery management system consisting of equal participants.}, language = {en} } @inproceedings{HopkinsHopfenspergerMellor, author = {Hopkins, Andrew and Hopfensperger, Bernhard and Mellor, Phil}, title = {DC-link Capacitor Reduction in Low Voltage and High Power Integrated Modular Motor Drives}, series = {2019 IEEE Energy Conversion Congress and Exposition (ECCE), 29 Sept.-3 Oct. 2019, Baltimore, MD, USA}, booktitle = {2019 IEEE Energy Conversion Congress and Exposition (ECCE), 29 Sept.-3 Oct. 2019, Baltimore, MD, USA}, doi = {10.1109/ECCE.2019.8913213}, pages = {3208 -- 3214}, abstract = {The development of 48V high power (>15 kW) automotive propulsion drives demands close integration of the power electronics and the electrical machine. Due to the large operating currents distributed multi-phase topologies are needed and physically separating the power converter from the e-machine would involve heavy cabling and costly connections. The volume and cost of the filter capacitor represents a major challenge in closely integrated high power integrated modular motor drives and techniques are needed to minimize this. The DC-link capacitor requires a large ripple current handling capability and cost, size and reliability limitations result in suitable candidate technologies being those with low volumetric energy densities. Use of interleaved multi three-phase machines are attractive due to the associated capacitor ripple current reduction. Discontinuous modulation schemes may also be employed as a technique for reducing the current ripple. In this paper techniques for capacitor ripple reduction are assessed through simulation and compared.}, language = {en} }