@inproceedings{HaumerKral, author = {Haumer, Anton and Kral, Christian}, title = {Enhancements of Electric Machine Models: The EMachines Library}, series = {Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015}, volume = {118}, booktitle = {Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015}, publisher = {Link{\"o}ping University Electronic Press}, doi = {10.3384/ecp15118509}, pages = {509 -- 515}, abstract = {Transient models of multi phase electric machines are already implemented in the Modelica Standard Library (MSL). However, advanced effects like saturation and skin effect are not taken into account. As an extension to the MSL models, the new EMachines library is presented. This package will be released as a supplemental library to the commercial EDrives library. The particular focus of this paper is on the deep bar effect of induction machines. A comparison of simulation results demonstrates the influence of the skin effect on the operational behavior of the machines. At the end of this publication further developments of the EMachines library will be outlined.}, language = {en} } @inproceedings{GrimmHaumer, author = {Grimm, Alexander and Haumer, Anton}, title = {EMOTH The EMobility Library of OTH Regensburg}, series = {Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017}, booktitle = {Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017}, publisher = {Link{\"o}ping University Electronic Press}, doi = {10.3384/ecp17132285}, pages = {285 -- 290}, abstract = {The importance of E-Mobility is rapidly increasing, not only for private vehicle traffic but also for public transport. In and around Regensburg, Germany there are a lot of automotive companies. Therefore E-Mobility is an important topic in the curriculum of several courses of study at the East-Bavarian Technical University of Applied Sciences Regensburg (OTH). One Master of Applied Research student at OTH has chosen the topic to develop an open-source simulation tool for electric vehicles - the EMOTH Library - based on Modelica and to refine several aspects of the library during the one and a half year of the master course. After one semester, the basic version of the library is available and will be presented in this paper.}, language = {en} } @inproceedings{HopkinsHopfenspergerMellor, author = {Hopkins, Andrew and Hopfensperger, Bernhard and Mellor, Phil}, title = {DC-link Capacitor Reduction in Low Voltage and High Power Integrated Modular Motor Drives}, series = {2019 IEEE Energy Conversion Congress and Exposition (ECCE), 29 Sept.-3 Oct. 2019, Baltimore, MD, USA}, booktitle = {2019 IEEE Energy Conversion Congress and Exposition (ECCE), 29 Sept.-3 Oct. 2019, Baltimore, MD, USA}, doi = {10.1109/ECCE.2019.8913213}, pages = {3208 -- 3214}, abstract = {The development of 48V high power (>15 kW) automotive propulsion drives demands close integration of the power electronics and the electrical machine. Due to the large operating currents distributed multi-phase topologies are needed and physically separating the power converter from the e-machine would involve heavy cabling and costly connections. The volume and cost of the filter capacitor represents a major challenge in closely integrated high power integrated modular motor drives and techniques are needed to minimize this. The DC-link capacitor requires a large ripple current handling capability and cost, size and reliability limitations result in suitable candidate technologies being those with low volumetric energy densities. Use of interleaved multi three-phase machines are attractive due to the associated capacitor ripple current reduction. Discontinuous modulation schemes may also be employed as a technique for reducing the current ripple. In this paper techniques for capacitor ripple reduction are assessed through simulation and compared.}, language = {en} } @inproceedings{BrkicCeranElmoghazyetal., author = {Brkic, Jovan and Ceran, Muaz and Elmoghazy, Mohamed and Kavlak, Ramazan and Haumer, Anton and Kral, Christian}, title = {Open Source PhotoVoltaics Library for Systemic Investigations}, series = {Proceedings of the 13th International Modelica Conference, March 4-6, 2019, Regensburg, Germany}, booktitle = {Proceedings of the 13th International Modelica Conference, March 4-6, 2019, Regensburg, Germany}, publisher = {Link{\"o}ing University Electronic Press}, doi = {10.3384/ecp1915741}, pages = {41 -- 50}, abstract = {For the planning of photovoltaic power plants standard software tools are used. Most of these software tools use statistical solar data to determine the overall energy harvest of a photovoltaic plant over one year. The calculations rely on stationary location and ideal boundary conditions, e.g., constant ambient temperature. Even though, for example, shadowing may be considered by standard software, the investigation of untypical configurations and problems cannot be performed by such software, as most configurations cannot be changed by the user. The presented PhotoVoltaics library was developed with the intention to provide a flexible framework for standard and non-standard problems. Particularly, the PhotoVoltaics library can be coupled with other Modelica libraries to perform systemic investigations. An application library, PhotoVoltaics_TGM, is provided as add-on, where measured data of two photovoltaic pants of the TGM in Vienna can be compared with simulation results. This add-on library serves as validation of the PhotoVoltaics library.}, language = {en} } @inproceedings{AlexanderHaumer, author = {Alexander, Grimm and Haumer, Anton}, title = {Parametrization Of A Simplified Physical Battery Model}, series = {Proceedings of the 13th International Modelica Conference, March 4-6, 2019, Regensburg, Germany}, booktitle = {Proceedings of the 13th International Modelica Conference, March 4-6, 2019, Regensburg, Germany}, publisher = {Link{\"o}ing University Electronic Press}, doi = {10.3384/ecp19157215}, pages = {215 -- 220}, abstract = {The importance of batteries is increasing, especially in the field of the high power requirement systems like electric driven vehicles. Mobile energy storage makes it possible to accelerate with incredible torque, without any accruing air pollution. Due to the high costs of real components, it is of great use to simulate battery driven systems before building them. Transient processes within a cell are highly dependent on the operating point of the complete system, which makes it difficult to create equations and model arameterizations. This paper shows which data is important for cell modeling and how to parameterize simplified physical cell models.}, language = {en} } @inproceedings{EberhartChungHaumeretal., author = {Eberhart, Philip and Chung, Tek Shan and Haumer, Anton and Kral, Christian}, title = {Open Source Library for the Simulation of Wind Power Plants}, series = {Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015}, booktitle = {Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015}, address = {Link{\"o}ping}, doi = {10.3384/ecp15118929}, pages = {929 -- 936}, abstract = {This paper presents the new open source Modelica libraryWindPowerPlants. For the economic assessment of either a wind power plant or an entire wind park, the accurate prediction of the energy output is essential. Such prediction is usually performed by means of calculations based on statistical wind data. The proposed WindPowerPlants library is capable of assessing the energy output both for statistical and real wind data based on time domain simulations. In the presented version of the library wind turbine models are modeled with pitch control. The generator models have variable speed and an optional connector to the mains. The entire library is based on power balance conditions and losses are fully neglected. Yet, the library can be extended towards more detailed models considering different types of losses. The structure and components of the library are presented. Simulations examples are shown and compared with reference data. The applicability of the proposed WindPowerPlants library is demonstrated and possible enhancements are discussed.}, language = {en} } @article{KralHaumerLee, author = {Kral, Christian and Haumer, Anton and Lee, Sang Bin}, title = {A Practical Thermal Model for the Estimation of Permanent Magnet and Stator Winding Temperatures}, series = {IEEE Transactions on Power Electronics}, volume = {29}, journal = {IEEE Transactions on Power Electronics}, number = {1}, publisher = {IEEE}, issn = {1941-0107}, doi = {10.1109/TPEL.2013.2253128}, pages = {455 -- 464}, abstract = {A thermal model for the determination of the temperatures of interior permanent magnets and stator windings is presented in this paper. The innovation of the model relies on one temperature sensor being located in the stator core of the machine. Such sensor is simple to implement in many applications such as traction or EV, where reliability is critical. The estimated stator winding and permanent magnet temperatures are determined by a simplified thermal lumped element network model with only two time constants. It is shown that the proposed thermal model is very robust due to the structure of the model and the measured stator core temperature. The distortion of the temperature estimates caused by the cooling circuit is inherently accounted for such that the model can be used for robust online prediction of temperatures. Experimental results based on a forced water-cooled interior permanent magnet synchronous machine setup are presented to validate the effectiveness of the presented model.}, language = {en} } @inproceedings{KralHaumerWoehrnschimmel, author = {Kral, Christian and Haumer, Anton and W{\"o}hrnschimmel, Reinhard}, title = {Extension of the FundamentalWave Library towards Multi Phase Electric Machine Models}, series = {Proceedings of the 10th International Modelica Conference, March 10-12, 2014, Lund, Sweden}, booktitle = {Proceedings of the 10th International Modelica Conference, March 10-12, 2014, Lund, Sweden}, publisher = {Link{\"o}ping University Electronic Press}, isbn = {978-91-7519-380-9}, issn = {1650-3686}, doi = {10.3384/ecp14096135}, pages = {135 -- 143}, abstract = {Abstract Electric machine theory and electric machine simulations models are often limited to three phases. Up to the Modelica Standard Libray (MSL) version 3.2 the provided machine models were limited to three phases. Particularly for large industrial drives and for redundancy reasons in electric vehicles and aircrafts multi phase electric machines are demanded. In the MSL 3.2.1 an extension of the existing FundamentalWave library has been performed to cope with phase numbers greater than or equal to three. The developed machine models are fully incorporating the multi phase electric; magnetic; rotational and thermal domain. In this publication the theoretical background of the machines models; Modelica implementation details; the parametrization of the models and simulation examples are presented.}, language = {en} } @article{HaumerKralVukovicetal., author = {Haumer, Anton and Kral, Christian and Vukovic, Vladimir and David, Alexander and Hettfleisch, Christian and Huzsvar, Attila}, title = {A Parametrization Scheme for High Performance Thermal Models of Electric Machines using Modelica}, series = {IFAC Proceedings Volumes}, volume = {45}, journal = {IFAC Proceedings Volumes}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1474-6670}, doi = {10.3182/20120215-3-AT-3016.00187}, pages = {1058 -- 1062}, abstract = {Thermal models offer great advantages for enhancement of design, protection and control of electric machines. Detailed thermal models take a great number of time constants into account and provide accurate prediction of the temperatures. However, to parameterize such models detailed geometric data are needed. Whenever such detailed information is not available, or the performance of the detailed models is not satisfying, simplified thermal models as described in this paper are advantageous. The calculation of parameters is described in detail, in order to achieve best accordance with temperatures obtained from measurements or from simulations with detailed thermal models. Thermal resistances are calculated from end temperatures of a test run with constant load (and known losses). Thermal capacitances are obtained using optimization to minimize deviation of simulated and measured temperatures during the whole test run. The thermal model of an asynchronous induction machine with squirrel cage is coupled with an electrical model of the drive. For validation, simulation results of an optimally parameterized simplified model are compared with temperatures obtained by simulation of a detailed thermal model, which in turn has been validated against measurement results, both for continuous duty S1 and intermittent duty S6 (6 minutes no-load followed by 4 minutes of 140\% nominal load). The deviations are not more than 4 K which is quite satisfying.}, language = {en} } @article{KralHaumerHaigisetal., author = {Kral, Christian and Haumer, Anton and Haigis, Matthias and Lang, Hermann and Kapeller, Hansj{\"o}rg}, title = {Comparison of a CFD Analysis and a Thermal Equivalent Circuit Model of a TEFC Induction Machine With Measurements}, series = {IEEE Transactions on Energy Conversion}, volume = {24}, journal = {IEEE Transactions on Energy Conversion}, number = {4}, publisher = {IEEE}, issn = {0885-8969}, doi = {10.1109/TEC.2009.2025428}, pages = {809 -- 818}, abstract = {For a totally enclosed fan-cooled induction machine, two methods of numerical analysis are compared with measurements. The first numerical method is based on computational fluid dynamics (CFDs) and the second one uses a thermal equivalent circuit (TEC). For the analysis based on CFD, a 3-D induction machine including housing is modeled. The numeric solution of the flow equations is determined for stationary temperature distributions. For the TEC, a discretized one-and-a-half-dimensional model of the induction machine is considered. With the TEC model, stationary and transient operating conditions can be simulated. Measurement results are determined by iron-copper-nickel sensors embedded in the stator winding and the housing, as well as by an IR sensor for measuring the rotor temperature. With these measurement signals, stationary and transient operating conditions can be analyzed. For stationary operating conditions, additionally, the housing temperatures are determined by an IR camera. The investigated simulation and measurement methods reveal different local and global temperatures, and thus, only certain aspects and characteristics of the obtained temperatures can be compared. Nevertheless, certain conclusions can be drawn from comparing these aspects considering the actual restrictions of each of the applied methods.}, language = {en} }