@article{EbigboMendelScheppachetal., author = {Ebigbo, Alanna and Mendel, Robert and Scheppach, Markus W. and Probst, Andreas and Shahidi, Neal and Prinz, Friederike and Fleischmann, Carola and R{\"o}mmele, Christoph and G{\"o}lder, Stefan Karl and Braun, Georg and Rauber, David and R{\"u}ckert, Tobias and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut}, title = {Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm}, series = {Gut}, volume = {71}, journal = {Gut}, number = {12}, publisher = {BMJ}, address = {London}, doi = {10.1136/gutjnl-2021-326470}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-54293}, pages = {2388 -- 2390}, abstract = {In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63\% and 76\%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85\% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training.}, language = {en} } @article{MeinikheimMendelPalmetal., author = {Meinikheim, Michael and Mendel, Robert and Palm, Christoph and Probst, Andreas and Muzalyova, Anna and Scheppach, Markus W. and Nagl, Sandra and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Schulz, Dominik Andreas Helmut Otto and Schlottmann, Jakob and Prinz, Friederike and Rauber, David and R{\"u}ckert, Tobias and Matsumura, Tomoaki and Fern{\´a}ndez-Esparrach, Gl{\`o}ria and Parsa, Nasim and Byrne, Michael F. and Messmann, Helmut and Ebigbo, Alanna}, title = {Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett's esophagus: a tandem randomized and video trial}, series = {Endoscopy}, volume = {56}, journal = {Endoscopy}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/a-2296-5696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-72818}, pages = {641 -- 649}, abstract = {Background This study evaluated the effect of an artificial intelligence (AI)-based clinical decision support system on the performance and diagnostic confidence of endoscopists in their assessment of Barrett's esophagus (BE). Methods 96 standardized endoscopy videos were assessed by 22 endoscopists with varying degrees of BE experience from 12 centers. Assessment was randomized into two video sets: group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. Results AI had a stand-alone sensitivity, specificity, and accuracy of 92.2\%, 68.9\%, and 81.3\%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3\%, 58.1\%, and 71.5\%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.8\% [95\%CI 65.2\%-74.2\%] to 78.0\% [95\%CI 74.0\%-82.0\%]; specificity 67.3\% [95\%CI 62.5\%-72.2\%] to 72.7\% [95\%CI 68.2\%-77.3\%]). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. Conclusion BE nonexperts benefitted significantly from additional AI. BE experts and nonexperts remained significantly below the stand-alone performance of AI, suggesting that there may be other factors influencing endoscopists' decisions to follow or discard AI advice.}, language = {en} } @inproceedings{MiddelPalmErdt, author = {Middel, Luise and Palm, Christoph and Erdt, Marius}, title = {Synthesis of Medical Images Using GANs}, series = {Uncertainty for safe utilization of machine learning in medical imaging and clinical image-based procedures. First International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019}, booktitle = {Uncertainty for safe utilization of machine learning in medical imaging and clinical image-based procedures. First International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019}, publisher = {Springer Nature}, address = {Cham}, isbn = {978-3-030-32688-3}, issn = {0302-9743}, doi = {10.1007/978-3-030-32689-0_13}, pages = {125 -- 134}, abstract = {The success of artificial intelligence in medicine is based on the need for large amounts of high quality training data. Sharing of medical image data, however, is often restricted by laws such as doctor-patient confidentiality. Although there are publicly available medical datasets, their quality and quantity are often low. Moreover, datasets are often imbalanced and only represent a fraction of the images generated in hospitals or clinics and can thus usually only be used as training data for specific problems. The introduction of generative adversarial networks (GANs) provides a mean to generate artificial images by training two convolutional networks. This paper proposes a method which uses GANs trained on medical images in order to generate a large number of artificial images that could be used to train other artificial intelligence algorithms. This work is a first step towards alleviating data privacy concerns and being able to publicly share data that still contains a substantial amount of the information in the original private data. The method has been evaluated on several public datasets and quantitative and qualitative tests showing promising results.}, subject = {Neuronale Netze}, language = {en} } @article{ArribasAntonelliFrazzonietal., author = {Arribas, Julia and Antonelli, Giulio and Frazzoni, Leonardo and Fuccio, Lorenzo and Ebigbo, Alanna and van der Sommen, Fons and Ghatwary, Noha and Palm, Christoph and Coimbra, Miguel and Renna, Francesco and Bergman, Jacques J.G.H.M. and Sharma, Prateek and Messmann, Helmut and Hassan, Cesare and Dinis-Ribeiro, Mario J.}, title = {Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis}, series = {Gut}, volume = {70}, journal = {Gut}, number = {8}, publisher = {BMJ}, address = {London}, doi = {10.1136/gutjnl-2020-321922}, pages = {1458 -- 1468}, abstract = {Objective: Artificial intelligence (AI) may reduce underdiagnosed or overlooked upper GI (UGI) neoplastic and preneoplastic conditions, due to subtle appearance and low disease prevalence. Only disease-specific AI performances have been reported, generating uncertainty on its clinical value. Design: We searched PubMed, Embase and Scopus until July 2020, for studies on the diagnostic performance of AI in detection and characterisation of UGI lesions. Primary outcomes were pooled diagnostic accuracy, sensitivity and specificity of AI. Secondary outcomes were pooled positive (PPV) and negative (NPV) predictive values. We calculated pooled proportion rates (\%), designed summary receiving operating characteristic curves with respective area under the curves (AUCs) and performed metaregression and sensitivity analysis. Results: Overall, 19 studies on detection of oesophageal squamous cell neoplasia (ESCN) or Barrett's esophagus-related neoplasia (BERN) or gastric adenocarcinoma (GCA) were included with 218, 445, 453 patients and 7976, 2340, 13 562 images, respectively. AI-sensitivity/specificity/PPV/NPV/positive likelihood ratio/negative likelihood ratio for UGI neoplasia detection were 90\% (CI 85\% to 94\%)/89\% (CI 85\% to 92\%)/87\% (CI 83\% to 91\%)/91\% (CI 87\% to 94\%)/8.2 (CI 5.7 to 11.7)/0.111 (CI 0.071 to 0.175), respectively, with an overall AUC of 0.95 (CI 0.93 to 0.97). No difference in AI performance across ESCN, BERN and GCA was found, AUC being 0.94 (CI 0.52 to 0.99), 0.96 (CI 0.95 to 0.98), 0.93 (CI 0.83 to 0.99), respectively. Overall, study quality was low, with high risk of selection bias. No significant publication bias was found. Conclusion: We found a high overall AI accuracy for the diagnosis of any neoplastic lesion of the UGI tract that was independent of the underlying condition. This may be expected to substantially reduce the miss rate of precancerous lesions and early cancer when implemented in clinical practice.}, language = {en} } @article{EbigboMendelRueckertetal., author = {Ebigbo, Alanna and Mendel, Robert and R{\"u}ckert, Tobias and Schuster, Laurin and Probst, Andreas and Manzeneder, Johannes and Prinz, Friederike and Mende, Matthias and Steinbr{\"u}ck, Ingo and Faiss, Siegbert and Rauber, David and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Deprez, Pierre and Oyama, Tsuneo and Takahashi, Akiko and Seewald, Stefan and Sharma, Prateek and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut}, title = {Endoscopic prediction of submucosal invasion in Barrett's cancer with the use of Artificial Intelligence: A pilot Study}, series = {Endoscopy}, volume = {53}, journal = {Endoscopy}, number = {09}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/a-1311-8570}, pages = {878 -- 883}, abstract = {Background and aims: The accurate differentiation between T1a and T1b Barrett's cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett's cancer white-light images. Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett's cancer. Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively. Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett's cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI.}, subject = {Maschinelles Lernen}, language = {en} } @article{RoemmeleMendelBarrettetal., author = {R{\"o}mmele, Christoph and Mendel, Robert and Barrett, Caroline and Kiesl, Hans and Rauber, David and R{\"u}ckert, Tobias and Kraus, Lisa and Heinkele, Jakob and Dhillon, Christine and Grosser, Bianca and Prinz, Friederike and Wanzl, Julia and Fleischmann, Carola and Nagl, Sandra and Schnoy, Elisabeth and Schlottmann, Jakob and Dellon, Evan S. and Messmann, Helmut and Palm, Christoph and Ebigbo, Alanna}, title = {An artificial intelligence algorithm is highly accurate for detecting endoscopic features of eosinophilic esophagitis}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, publisher = {Nature Portfolio}, address = {London}, doi = {10.1038/s41598-022-14605-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-46928}, pages = {10}, abstract = {The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoEEREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level.}, language = {en} } @article{ScheppachMendelMuzalyovaetal., author = {Scheppach, Markus W. and Mendel, Robert and Muzalyova, Anna and Rauber, David and Probst, Andreas and Nagl, Sandra and R{\"o}mmele, Christoph and Yip, Hon Chi and Lau, Louis Ho Shing and G{\"o}lder, Stefan Karl and Schmidt, Arthur and Kouladouros, Konstantinos and Abdelhafez, Mohamed and Walter, Benjamin M. and Meinikheim, Michael and Chiu, Philip Wai Yan and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Artificial intelligence improves submucosal vessel detection during third space endoscopy}, series = {Endoscopy}, journal = {Endoscopy}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/a-2534-1164}, abstract = {Background and study aims: While artificial intelligence (AI) shows high potential in decision support for diagnostic gastrointestinal endoscopy, its role in therapeutic endoscopy remains unclear. Third space endoscopic procedures pose the risk of intraprocedural bleeding. Therefore, we aimed to develop an AI algorithm for intraprocedural blood vessel detection. Patients and Methods: Using a test dataset with 101 standardized video clips containing 200 predefined submucosal blood vessels, 19 endoscopists were evaluated for the vessel detection rate (VDR) and time (VDT) with and without support of an AI algorithm. Test subjects were grouped according to experience in ESD. Results: With AI support, endoscopists VDR increased from 56.4\% [CI 54.1-58.6] to 72.4\% [CI 70.3-74.4]. Endoscopists' VDT dropped from 6.7sec [CI 6.2-7.1] to 5.2sec [CI 4.8-5.7]. False positive (FP) readings appeared in 4.5\% of frames and were marked significantly shorter than true positives (6.0sec [CI 5.28-6.70] vs. 0.7sec [CI 0.55-0.87]). Conclusions: AI improved the vessel detection rate and time of endoscopists during third space endoscopy. While these data need to be corroborated by clinical trials, AI may prove to be an invaluable tool for the improvement of endoscopic interventions.}, language = {en} } @misc{EbigboMendelTziatziosetal., author = {Ebigbo, Alanna and Mendel, Robert and Tziatzios, Georgios and Probst, Andreas and Palm, Christoph and Messmann, Helmut}, title = {Real-Time Diagnosis of an Early Barrett's Carcinoma using Artificial Intelligence (AI) - Video Case Demonstration}, series = {Endoscopy}, volume = {52}, journal = {Endoscopy}, number = {S 01}, publisher = {Thieme}, doi = {10.1055/s-0040-1704075}, pages = {S23}, abstract = {Introduction We present a clinical case showing the real-time detection, characterization and delineation of an early Barrett's cancer using AI. Patients and methods A 70-year old patient with a long-segment Barrett's esophagus (C5M7) was assessed with an AI algorithm. Results The AI system detected a 10 mm focal lesion and AI characterization predicted cancer with a probability of >90\%. After ESD resection, histopathology showed mucosal adenocarcinoma (T1a (m), R0) confirming AI diagnosis. Conclusion We demonstrate the real-time AI detection, characterization and delineation of a small and early mucosal Barrett's cancer.}, subject = {Speiser{\"o}hrenkrebs}, language = {en} } @misc{ScheppachMendelProbstetal., author = {Scheppach, Markus W. and Mendel, Robert and Probst, Andreas and Rauber, David and R{\"u}ckert, Tobias and Meinikheim, Michael and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Real-time detection and delineation of tissue during third-space endoscopy using artificial intelligence (AI)}, series = {Endoscopy}, volume = {55}, journal = {Endoscopy}, number = {S02}, publisher = {Thieme}, doi = {10.1055/s-0043-1765128}, pages = {S53 -- S54}, abstract = {Aims AI has proven great potential in assisting endoscopists in diagnostics, however its role in therapeutic endoscopy remains unclear. Endoscopic submucosal dissection (ESD) is a technically demanding intervention with a slow learning curve and relevant risks like bleeding and perforation. Therefore, we aimed to develop an algorithm for the real-time detection and delineation of relevant structures during third-space endoscopy. Methods 5470 still images from 59 full length videos (47 ESD, 12 POEM) were annotated. 179681 additional unlabeled images were added to the training dataset. Consequently, a DeepLabv3+ neural network architecture was trained with the ECMT semi-supervised algorithm (under review elsewhere). Evaluation of vessel detection was performed on a dataset of 101 standardized video clips from 15 separate third-space endoscopy videos with 200 predefined blood vessels. Results Internal validation yielded an overall mean Dice score of 85\% (68\% for blood vessels, 86\% for submucosal layer, 88\% for muscle layer). On the video test data, the overall vessel detection rate (VDR) was 94\% (96\% for ESD, 74\% for POEM). The median overall vessel detection time (VDT) was 0.32 sec (0.3 sec for ESD, 0.62 sec for POEM). Conclusions Evaluation of the developed algorithm on a video test dataset showed high VDR and quick VDT, especially for ESD. Further research will focus on a possible clinical benefit of the AI application for VDR and VDT during third-space endoscopy.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @article{EbigboMendelProbstetal., author = {Ebigbo, Alanna and Mendel, Robert and Probst, Andreas and Meinikheim, Michael and Byrne, Michael F. and Messmann, Helmut and Palm, Christoph}, title = {Multimodal imaging for detection and segmentation of Barrett's esophagus-related neoplasia using artificial intelligence}, series = {Endoscopy}, volume = {54}, journal = {Endoscopy}, number = {10}, edition = {E-Video}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/a-1704-7885}, pages = {1}, abstract = {The early diagnosis of cancer in Barrett's esophagus is crucial for improving the prognosis. However, identifying Barrett's esophagus-related neoplasia (BERN) is challenging, even for experts [1]. Four-quadrant biopsies may improve the detection of neoplasia, but they can be associated with sampling errors. The application of artificial intelligence (AI) to the assessment of Barrett's esophagus could improve the diagnosis of BERN, and this has been demonstrated in both preclinical and clinical studies [2] [3]. In this video demonstration, we show the accurate detection and delineation of BERN in two patients ([Video 1]). In part 1, the AI system detects a mucosal cancer about 20 mm in size and accurately delineates the lesion in both white-light and narrow-band imaging. In part 2, a small island of BERN with high-grade dysplasia is detected and delineated in white-light, narrow-band, and texture and color enhancement imaging. The video shows the results using a transparent overlay of the mucosal cancer in real time as well as a full segmentation preview. Additionally, the optical flow allows for the assessment of endoscope movement, something which is inversely related to the reliability of the AI prediction. We demonstrate that multimodal imaging can be applied to the AI-assisted detection and segmentation of even small focal lesions in real time.}, language = {en} } @misc{MeinikheimMendelScheppachetal., author = {Meinikheim, Michael and Mendel, Robert and Scheppach, Markus W. and Probst, Andreas and Prinz, Friederike and Schwamberger, Tanja and Schlottmann, Jakob and G{\"o}lder, Stefan Karl and Walter, Benjamin and Steinbr{\"u}ck, Ingo and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {INFLUENCE OF AN ARTIFICIAL INTELLIGENCE (AI) BASED DECISION SUPPORT SYSTEM (DSS) ON THE DIAGNOSTIC PERFORMANCE OF NON-EXPERTS IN BARRETT´S ESOPHAGUS RELATED NEOPLASIA (BERN)}, series = {Endoscopy}, volume = {54}, journal = {Endoscopy}, number = {S 01}, publisher = {Thieme}, doi = {10.1055/s-00000012}, pages = {S39}, abstract = {Aims Barrett´s esophagus related neoplasia (BERN) is difficult to detect and characterize during endoscopy, even for expert endoscopists. We aimed to assess the add-on effect of an Artificial Intelligence (AI) algorithm (Barrett-Ampel) as a decision support system (DSS) for non-expert endoscopists in the evaluation of Barrett's esophagus (BE) and BERN. Methods Twelve videos with multimodal imaging white light (WL), narrow-band imaging (NBI), texture and color enhanced imaging (TXI) of histologically confirmed BE and BERN were assessed by expert and non-expert endoscopists. For each video, endoscopists were asked to identify the area of BERN and decide on the biopsy spot. Videos were assessed by the AI algorithm and regions of BERN were highlighted in real-time by a transparent overlay. Finally, endoscopists were shown the AI videos and asked to either confirm or change their initial decision based on the AI support. Results Barrett-Ampel correctly identified all areas of BERN, irrespective of the imaging modality (WL, NBI, TXI), but misinterpreted two inflammatory lesions (Accuracy=75\%). Expert endoscopists had a similar performance (Accuracy=70,8\%), while non-experts had an accuracy of 58.3\%. When AI was implemented as a DSS, non-expert endoscopists improved their diagnostic accuracy to 75\%. Conclusions AI may have the potential to support non-expert endoscopists in the assessment of videos of BE and BERN. Limitations of this study include the low number of videos used. Randomized clinical trials in a real-life setting should be performed to confirm these results.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @article{ScheppachMendelProbstetal., author = {Scheppach, Markus W. and Mendel, Robert and Probst, Andreas and Meinikheim, Michael and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {ARTIFICIAL INTELLIGENCE (AI) - ASSISTED VESSEL AND TISSUE RECOGNITION IN THIRD-SPACE ENDOSCOPY}, series = {Endoscopy}, volume = {54}, journal = {Endoscopy}, number = {S01}, publisher = {Thieme}, doi = {10.1055/s-0042-1745037}, pages = {S175}, abstract = {Aims Third-space endoscopy procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex interventions with elevated risk of operator-dependent adverse events, such as intra-procedural bleeding and perforation. We aimed to design an artificial intelligence clinical decision support solution (AI-CDSS, "Smart ESD") for the detection and delineation of vessels, tissue structures, and instruments during third-space endoscopy procedures. Methods Twelve full-length third-space endoscopy videos were extracted from the Augsburg University Hospital database. 1686 frames were annotated for the following categories: Submucosal layer, blood vessels, electrosurgical knife and endoscopic instrument. A DeepLabv3+neural network with a 101-layer ResNet backbone was trained and validated internally. Finally, the ability of the AI system to detect visible vessels during ESD and POEM was determined on 24 separate video clips of 7 to 46 seconds duration and showing 33 predefined vessels. These video clips were also assessed by an expert in third-space endoscopy. Results Smart ESD showed a vessel detection rate (VDR) of 93.94\%, while an average of 1.87 false positive signals were recorded per minute. VDR of the expert endoscopist was 90.1\% with no false positive findings. On the internal validation data set using still images, the AI system demonstrated an Intersection over Union (IoU), mean Dice score and pixel accuracy of 63.47\%, 76.18\% and 86.61\%, respectively. Conclusions This is the first AI-CDSS aiming to mitigate operator-dependent limitations during third-space endoscopy. Further clinical trials are underway to better understand the role of AI in such procedures.}, language = {en} } @misc{ScheppachMendelProbstetal., author = {Scheppach, Markus W. and Mendel, Robert and Probst, Andreas and Meinikheim, Michael and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Artificial Intelligence (AI) - assisted vessel and tissue recognition during third space endoscopy (Smart ESD)}, series = {Zeitschrift f{\"u}r Gastroenterologie}, volume = {60}, journal = {Zeitschrift f{\"u}r Gastroenterologie}, number = {08}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/s-0042-1755110}, abstract = {Clinical setting Third space procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex minimally invasive techniques with an elevated risk for operator-dependent adverse events such as bleeding and perforation. This risk arises from accidental dissection into the muscle layer or through submucosal blood vessels as the submucosal cutting plane within the expanding resection site is not always apparent. Deep learning algorithms have shown considerable potential for the detection and characterization of gastrointestinal lesions. So-called AI - clinical decision support solutions (AI-CDSS) are commercially available for polyp detection during colonoscopy. Until now, these computer programs have concentrated on diagnostics whereas an AI-CDSS for interventional endoscopy has not yet been introduced. We aimed to develop an AI-CDSS („Smart ESD") for real-time intra-procedural detection and delineation of blood vessels, tissue structures and endoscopic instruments during third-space endoscopic procedures. Characteristics of Smart ESD An AI-CDSS was invented that delineates blood vessels, tissue structures and endoscopic instruments during third-space endoscopy in real-time. The output can be displayed by an overlay over the endoscopic image with different modes of visualization, such as a color-coded semitransparent area overlay, or border tracing (demonstration video). Hereby the optimal layer for dissection can be visualized, which is close above or directly at the muscle layer, depending on the applied technique (ESD or POEM). Furthermore, relevant blood vessels (thickness> 1mm) are delineated. Spatial proximity between the electrosurgical knife and a blood vessel triggers a warning signal. By this guidance system, inadvertent dissection through blood vessels could be averted. Technical specifications A DeepLabv3+ neural network architecture with KSAC and a 101-layer ResNeSt backbone was used for the development of Smart ESD. It was trained and validated with 2565 annotated still images from 27 full length third-space endoscopic videos. The annotation classes were blood vessel, submucosal layer, muscle layer, electrosurgical knife and endoscopic instrument shaft. A test on a separate data set yielded an intersection over union (IoU) of 68\%, a Dice Score of 80\% and a pixel accuracy of 87\%, demonstrating a high overlap between expert and AI segmentation. Further experiments on standardized video clips showed a mean vessel detection rate (VDR) of 85\% with values of 92\%, 70\% and 95\% for POEM, rectal ESD and esophageal ESD respectively. False positive measurements occurred 0.75 times per minute. 7 out of 9 vessels which caused intraprocedural bleeding were caught by the algorithm, as well as both vessels which required hemostasis via hemostatic forceps. Future perspectives Smart ESD performed well for vessel and tissue detection and delineation on still images, as well as on video clips. During a live demonstration in the endoscopy suite, clinical applicability of the innovation was examined. The lag time for processing of the live endoscopic image was too short to be visually detectable for the interventionist. Even though the algorithm could not be applied during actual dissection by the interventionist, Smart ESD appeared readily deployable during visual assessment by ESD experts. Therefore, we plan to conduct a clinical trial in order to obtain CE-certification of the algorithm. This new technology may improve procedural safety and speed, as well as training of modern minimally invasive endoscopic resection techniques.}, subject = {Bildgebendes Verfahren}, language = {en} }