@article{EbigboPalmMessmann, author = {Ebigbo, Alanna and Palm, Christoph and Messmann, Helmut}, title = {Barrett esophagus: What to expect from Artificial Intelligence?}, series = {Best Practice \& Research Clinical Gastroenterology}, volume = {52-53}, journal = {Best Practice \& Research Clinical Gastroenterology}, number = {June-August}, publisher = {Elsevier}, issn = {1521-6918}, doi = {10.1016/j.bpg.2021.101726}, abstract = {The evaluation and assessment of Barrett's esophagus is challenging for both expert and nonexpert endoscopists. However, the early diagnosis of cancer in Barrett's esophagus is crucial for its prognosis, and could save costs. Pre-clinical and clinical studies on the application of Artificial Intelligence (AI) in Barrett's esophagus have shown promising results. In this review, we focus on the current challenges and future perspectives of implementing AI systems in the management of patients with Barrett's esophagus.}, subject = {Deep Learning}, language = {en} } @article{PassosDeSouzaJrMendeletal., author = {Passos, Leandro A. and De Souza Jr., Luis Antonio and Mendel, Robert and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Palm, Christoph and Papa, Jo{\~a}o Paulo}, title = {Barrett's esophagus analysis using infinity Restricted Boltzmann Machines}, series = {Journal of Visual Communication and Image Representation}, volume = {59}, journal = {Journal of Visual Communication and Image Representation}, publisher = {Elsevier}, doi = {10.1016/j.jvcir.2019.01.043}, pages = {475 -- 485}, abstract = {The number of patients with Barret's esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett's esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @article{EbigboPalmProbstetal., author = {Ebigbo, Alanna and Palm, Christoph and Probst, Andreas and Mendel, Robert and Manzeneder, Johannes and Prinz, Friederike and De Souza Jr., Luis Antonio and Papa, Jo{\~a}o Paulo and Siersema, Peter and Messmann, Helmut}, title = {A technical review of artificial intelligence as applied to gastrointestinal endoscopy: clarifying the terminology}, series = {Endoscopy International Open}, volume = {07}, journal = {Endoscopy International Open}, number = {12}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/a-1010-5705}, pages = {1616 -- 1623}, abstract = {The growing number of publications on the application of artificial intelligence (AI) in medicine underlines the enormous importance and potential of this emerging field of research. In gastrointestinal endoscopy, AI has been applied to all segments of the gastrointestinal tract most importantly in the detection and characterization of colorectal polyps. However, AI research has been published also in the stomach and esophagus for both neoplastic and non-neoplastic disorders. The various technical as well as medical aspects of AI, however, remain confusing especially for non-expert physicians. This physician-engineer co-authored review explains the basic technical aspects of AI and provides a comprehensive overview of recent publications on AI in gastrointestinal endoscopy. Finally, a basic insight is offered into understanding publications on AI in gastrointestinal endoscopy.}, subject = {Diagnose}, language = {en} } @article{EbigboMendelProbstetal., author = {Ebigbo, Alanna and Mendel, Robert and Probst, Andreas and Manzeneder, Johannes and Prinz, Friederike and De Souza Jr., Luis Antonio and Papa, Jo{\~a}o Paulo and Palm, Christoph and Messmann, Helmut}, title = {Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus}, series = {Gut}, volume = {69}, journal = {Gut}, number = {4}, publisher = {BMJ}, address = {London}, doi = {10.1136/gutjnl-2019-319460}, pages = {615 -- 616}, abstract = {Based on previous work by our group with manual annotation of visible Barrett oesophagus (BE) cancer images, a real-time deep learning artificial intelligence (AI) system was developed. While an expert endoscopist conducts the endoscopic assessment of BE, our AI system captures random images from the real-time camera livestream and provides a global prediction (classification), as well as a dense prediction (segmentation) differentiating accurately between normal BE and early oesophageal adenocarcinoma (EAC). The AI system showed an accuracy of 89.9\% on 14 cases with neoplastic BE.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} }