@misc{MelznerPfeiferSuessetal., author = {Melzner, Maximilian and Pfeifer, Christian and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Muskuloskeletal analysis of elbow stability for common injury patterns}, series = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, journal = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, pages = {654}, language = {en} } @misc{KoeglerIsmailRusavyetal., author = {K{\"o}gler, Michael and Ismail, Khaled M. and Rusavy, Zdenek and Kalis, Vladimir and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Influence of bed height and stance on accoucheurs lower back and glenohumeral load during simulated childbirth}, series = {31st meeting of Czech Urogynaecological Society, Prague, 2022}, journal = {31st meeting of Czech Urogynaecological Society, Prague, 2022}, language = {en} } @article{EigenbergerFelthausSchratzenstalleretal., author = {Eigenberger, Andreas and Felthaus, Oliver and Schratzenstaller, Thomas and Haerteis, Silke and Utpatel, Kirsten and Prantl, Lukas}, title = {The Effects of Shear Force-Based Processing of Lipoaspirates on White Adipose Tissue and the Differentiation Potential of Adipose Derived Stem Cells}, series = {cells}, volume = {11}, journal = {cells}, number = {16}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/cells11162543}, pages = {13}, abstract = {Autologous lipotransfer is a promising method for tissue regeneration, because white adipose tissue contains a heterogeneous cell population, including mesenchymal stem cells, endothelial cells, immune cells, and adipocytes. In order to improve the outcome, adipose tissue can be processed before application. In this study, we investigated changes caused by mechanical processing. Lipoaspirates were processed using sedimentation, first-time centrifugation, shear-force homogenization, and second-time centrifugation. The average adipocyte size, stromal vascular cell count, and adipocyte depot size were examined histologically at every processing step. In addition, the adipose derived stem cells (ADSCs) were isolated and differentiated osteogenically and adipogenically. While homogenization causes a disruption of adipocyte depots, the shape of the remaining adipocytes is not changed. On average, these adipocytes are smaller than the depot adipocytes, they are surrounded by the ECM, and therefore mechanically more stable. The volume loss of adipocyte depots leads to a significant enrichment of stromal vascular cells such as ADSCs. However, the mechanical processing does not change the potential of the ADSCs to differentiate adipogenically or steogenically. It thus appears that mechanically processed lipoaspirates are promising for the reparation of even mechanically stressed tissue as that found in nasolabial folds. The changes resulting from the processing correspond more to a filtration of mechanically less stable components than to a manipulation of the tissue.}, language = {en} } @misc{AuerReinkerSuessetal., author = {Auer, Simon and Reinker, Lukas and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Comparing calculated and measured muscle activity of thigh muscles in dynamic motion.}, series = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, journal = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, pages = {640}, language = {en} } @article{AuerSchieblIversenetal., author = {Auer, Simon and Schiebl, Jonas and Iversen, Kristoffer and Subhash Chander, Divyaksh and Damsgaard, Michael and Dendorfer, Sebastian}, title = {Biomechanical assessment of the design and efficiency of occupational exoskeletons with the AnyBody Modeling System}, series = {Zeitschrift f{\"u}r Arbeitswissenschaften}, volume = {76}, journal = {Zeitschrift f{\"u}r Arbeitswissenschaften}, number = {4}, publisher = {Springer Nature}, doi = {10.1007/s41449-022-00336-4}, pages = {440 -- 449}, abstract = {Exoskeletons were invented over 100 years ago but have only become popular in the last two decades, especially in the working industry as they can decrease work-related loads significantly. The most often used exoskeletons are for the lower back and shoulder since these are commonly affected body regions. All devices have in common that their purpose is to reduce internal loads of vulnerable body regions. Nevertheless, there is still little understanding on how biomechanical loading in the human body changes when exoskeletons are used. Therefore, further analyses are needed. A promising candidate for these are musculoskeletal models, which are based on an inverse dynamics approach and can calculate external parameters such as ground reaction forces or other interaction forces as well as internal parameters such as joint reaction forces or muscle activities. The various examples in the literature show that these models are increasingly used for assessing the biomechanical effects of exoskeletons on the human body. Furthermore, musculoskeletal models can calculate biomechanical loadings of humans with and without exoskeletons for all kinds of applications and allow an evaluation of their purpose. Practical Relevance: This article highlights the possibilities of musculoskeletal models for assessing the design and efficiency of occupational exoskeletons. Several practical use cases are described along with distinct descriptions of common implications of musculoskeletal and exoskeleton modeling.}, language = {en} } @article{MelznerPfeifferSuessetal., author = {Melzner, Maximilian and Pfeiffer, Christian and Suess, Franz and Dendorfer, Sebastian}, title = {Musculoskeletal simulation of elbow stability for common injury patterns}, series = {Journal of Orthopaedic Research}, volume = {41}, journal = {Journal of Orthopaedic Research}, number = {6}, publisher = {Wiley}, issn = {1554-527X}, doi = {10.1002/jor.25460}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-54819}, pages = {1356 -- 1364}, abstract = {Elbow stability is derived from a combination of muscular, ligamentous, and bony structures. After an elbow trauma the stability of the joint is an important decision criterion for the subsequent treatment. The decision regarding non-operative/operative care depends mostly on subjective assessments of medical experts. Therefore, the aim of this study is to use musculoskeletal simulations as an objective assessment tool to investigate the extent to which failure of different stabilizers affects the elbow stability and how these observations correspond to the assessment from clinical practice. A musculoskeletal elbow simulation model was developed for this aim. To investigate the stability of the elbow, varus/valgus moments were applied under 0°, 45°and 90° flexion while the respective cubital angle was analyzed. This was performed for nine different injury scenarios, which were also evaluated for stability by clinical experts. With the results, it can be determined by which injury pattern and under which flexion angle the elbow stability is impaired regarding varus/valgus moments. The scenario with a complete failure of the medial and lateral ligaments and a fracture of the radial head was identified as having the greatest instability. The study presented a numerical determination of elbow stability against varus/valgus moments regarding clinical injury patterns, as well as a comparison of the numerical outcome with experience gained in clinical practice. The numerical predictions agree well with the assessments of the clinical specialists. Thus, the results from musculoskeletal simulation can make an important contribution to a more objective assessment of the elbow stability.}, language = {en} } @misc{StelzerRuettenKrenkel, author = {Stelzer, Vera and R{\"u}tten, Markus and Krenkel, Lars}, title = {Numerical Investigation of a 3D Dragonfly Wing Captured with a High-Resolution Micro-CT}, series = {8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2022, 5-9 June 2022, Oslo, Norway}, journal = {8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2022, 5-9 June 2022, Oslo, Norway}, abstract = {The special wing geometry of dragonflies consisting of veins and a membrane forming a corrugated profile leads to special aerodynamic characteristics. To capture the governing flow regimes of a dragonfly wing in detail, a realistic wing model has to be investigated. Therefore, this study aimed to analyze the aerodynamic characteristics of a 3D dragonfly wing reconstructed from a high-resolution micro-CT scan. Afterwards, a spatially high discretized mesh was generated using the mesh generator CENTAUR™ 14.5.0.2 (CentaurSoft, Austin, TX, US) to finally conduct Computational Fluid Dynamics (CFD) investigations in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, US). Due to the small dimensions of the wing membrane, only the vein structure of a Camacinia Gigantea was captured at a micro-CT voxel size of 7 microns. The membrane was adapted and connected to the vein structure using a Boolean union operation. Occurring nconsistencies after combining the veins and the membrane were corrected using an adapted pymesh script [1]. As an initial study, only one quarter of the wing (outer wing section) was investigated to reduce the required computational effort. The resulting hybrid mesh consisting of 10 pseudo-structured prism layers along the wing surface and tetrahedra in the farfield area has 43 mio. nodes. The flow around the wing was considered to be incompressible and laminar using transient calculations. When the flow passes the vein structures, steady vortices occur in the corrugation valleys leading to recirculation zones. Therefore, the dragonfly wing resembles the profile of an airfoil. This leads to comparable lift coefficients of dragonfly wings and airfoil profiles at significantly reduced structural weight. The reconstructed geometry also included naturally occurring triangular prismlike serrated structures at the leading edge of the wing, which have comparable effects to micro vortex generators and might stabilize the recirculation zones. Further work aims to investigate the aerodynamic properties of a complete dragonfly wing during wing flapping.}, language = {en} } @misc{TauwaldQuadrioRuettenetal., author = {Tauwald, Sandra Melina and Quadrio, Maurizio and R{\"u}tten, Markus and Stemmer, Christian and Krenkel, Lars}, title = {High Spatial Resolution Tomo-PIV of the Nasopharynx Focussing on the Physiological Breathing Cycle}, series = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, journal = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, address = {G{\"o}ttingen}, organization = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt e.V. / Arbeitsgemeinschaft Str{\"o}mungen mit Abl{\"o}sung, AG STAB}, abstract = {Investigations of complex patient-specific flow in the nasopharynx requires high resolution numerical calculations validated by reliable experiments. When building the validation base and the benchmark of computational fluid dynamics, an experimental setup of the nasal airways was developed. The applied optical measurement technique of tomo-PIV supplies information on the governing flow field in three dimensions. This paper presents tomo-PIV measurements of the highly complex patient-specific geometry of the human trachea. A computertomographic scan of a person's head builds the basis of the experimental silicone model of the nasal airways. An optimised approach for precise refractive index matching avoids optical distortions even in highly complex non-free-of-sight 3D geometries. A linear-motor-driven pump generates breathing scenarios, based on measured breathing cycles. Adjusting of the CCD cameras' double-frame-rate PIV-Δt enables the detailed analysis of flow structures during different cycle phases. Merging regions of interest enables high spatial resolution acquisition of the flow field.}, language = {en} } @misc{StelzerTauwaldVielsmeieretal., author = {Stelzer, Vera and Tauwald, Sandra Melina and Vielsmeier, Veronika and Cieplik, Fabian and Kandulski, Arne and Schneider-Brachert, Wulf and Wuensch, Olaf and R{\"u}tten, Markus and Krenkel, Lars}, title = {Generation, Distribution, and Contagiousness of Surgical Smoke during Tracheotomies}, series = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, journal = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, address = {G{\"o}ttingen}, organization = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt e.V. / Arbeitsgemeinschaft Str{\"o}mungen mit Abl{\"o}sung, AG STAB}, abstract = {Surgical smoke has been a little discussed topic in the context of the current pandemic. Surgical smoke is generated during the cauterization of tissue with heat-generating devices and consists of 95\% water vapor and 5\% cellular debris in the form of particulate matter. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during tissue electrocautery. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. The higher the power of the high-frequency-device the larger the particles in size and the higher the resulting particle counts. The images taken show the densest smoke at 40W with artificial saliva. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms that the risk arising from surgical smoke should be considered. Furthermore, the experiments will provide the database for further numerical investigations.}, language = {en} } @article{StelzerKrenkel, author = {Stelzer, Vera and Krenkel, Lars}, title = {2D numerical investigations derived from a 3D dragonfly wing captured with a high-resolution micro-CT}, series = {Technology and health care : official journal of the European Society for Engineering and Medicine}, volume = {30}, journal = {Technology and health care : official journal of the European Society for Engineering and Medicine}, number = {1}, publisher = {IOS Press}, doi = {10.3233/THC-219010}, pages = {283 -- 289}, abstract = {BACKGROUND: Due to their corrugated profile, dragonfly wings have special aerodynamic characteristics during flying and gliding. OBJECTIVE: The aim of this study was to create a realistic 3D model of a dragonfly wing captured with a high-resolution micro-CT. To represent geometry changes in span and chord length and their aerodynamic effects, numerical investigations are carried out at different wing positions. METHODS: The forewing of a Camacinia gigantea was captured using a micro-CT. After the wing was adapted an error-free 3D model resulted. The wing was cut every 5 mm and 2D numerical analyses were conducted in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, USA). RESULTS: The highest lift coefficient, as well as the highest lift-to-drag ratio, resulted at 0 mm and an angle of attack (AOA) of 5∘. At AOAs of 10∘ or 15∘, the flow around the wing stalled and a K{\´a}rm{\´a}n vortex street behind the wing becomes CONCLUSIONS: The velocity is higher on the upper side of the wing compared to the lower side. The pressure acts vice versa. Due to the recirculation zones that are formed in valleys of the corrugation pattern the wing resembles the form of an airfoil.}, language = {en} }