@misc{StelzerRuettenKrenkel, author = {Stelzer, Vera and R{\"u}tten, Markus and Krenkel, Lars}, title = {Numerical Investigation of a 3D Dragonfly Wing Captured with a High-Resolution Micro-CT}, series = {8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2022, 5-9 June 2022, Oslo, Norway}, journal = {8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2022, 5-9 June 2022, Oslo, Norway}, abstract = {The special wing geometry of dragonflies consisting of veins and a membrane forming a corrugated profile leads to special aerodynamic characteristics. To capture the governing flow regimes of a dragonfly wing in detail, a realistic wing model has to be investigated. Therefore, this study aimed to analyze the aerodynamic characteristics of a 3D dragonfly wing reconstructed from a high-resolution micro-CT scan. Afterwards, a spatially high discretized mesh was generated using the mesh generator CENTAUR™ 14.5.0.2 (CentaurSoft, Austin, TX, US) to finally conduct Computational Fluid Dynamics (CFD) investigations in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, US). Due to the small dimensions of the wing membrane, only the vein structure of a Camacinia Gigantea was captured at a micro-CT voxel size of 7 microns. The membrane was adapted and connected to the vein structure using a Boolean union operation. Occurring nconsistencies after combining the veins and the membrane were corrected using an adapted pymesh script [1]. As an initial study, only one quarter of the wing (outer wing section) was investigated to reduce the required computational effort. The resulting hybrid mesh consisting of 10 pseudo-structured prism layers along the wing surface and tetrahedra in the farfield area has 43 mio. nodes. The flow around the wing was considered to be incompressible and laminar using transient calculations. When the flow passes the vein structures, steady vortices occur in the corrugation valleys leading to recirculation zones. Therefore, the dragonfly wing resembles the profile of an airfoil. This leads to comparable lift coefficients of dragonfly wings and airfoil profiles at significantly reduced structural weight. The reconstructed geometry also included naturally occurring triangular prismlike serrated structures at the leading edge of the wing, which have comparable effects to micro vortex generators and might stabilize the recirculation zones. Further work aims to investigate the aerodynamic properties of a complete dragonfly wing during wing flapping.}, language = {en} } @misc{TauwaldQuadrioRuettenetal., author = {Tauwald, Sandra Melina and Quadrio, Maurizio and R{\"u}tten, Markus and Stemmer, Christian and Krenkel, Lars}, title = {High Spatial Resolution Tomo-PIV of the Nasopharynx Focussing on the Physiological Breathing Cycle}, series = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, journal = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, address = {G{\"o}ttingen}, organization = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt e.V. / Arbeitsgemeinschaft Str{\"o}mungen mit Abl{\"o}sung, AG STAB}, abstract = {Investigations of complex patient-specific flow in the nasopharynx requires high resolution numerical calculations validated by reliable experiments. When building the validation base and the benchmark of computational fluid dynamics, an experimental setup of the nasal airways was developed. The applied optical measurement technique of tomo-PIV supplies information on the governing flow field in three dimensions. This paper presents tomo-PIV measurements of the highly complex patient-specific geometry of the human trachea. A computertomographic scan of a person's head builds the basis of the experimental silicone model of the nasal airways. An optimised approach for precise refractive index matching avoids optical distortions even in highly complex non-free-of-sight 3D geometries. A linear-motor-driven pump generates breathing scenarios, based on measured breathing cycles. Adjusting of the CCD cameras' double-frame-rate PIV-Δt enables the detailed analysis of flow structures during different cycle phases. Merging regions of interest enables high spatial resolution acquisition of the flow field.}, language = {en} } @misc{StelzerTauwaldVielsmeieretal., author = {Stelzer, Vera and Tauwald, Sandra Melina and Vielsmeier, Veronika and Cieplik, Fabian and Kandulski, Arne and Schneider-Brachert, Wulf and Wuensch, Olaf and R{\"u}tten, Markus and Krenkel, Lars}, title = {Generation, Distribution, and Contagiousness of Surgical Smoke during Tracheotomies}, series = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, journal = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, address = {G{\"o}ttingen}, organization = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt e.V. / Arbeitsgemeinschaft Str{\"o}mungen mit Abl{\"o}sung, AG STAB}, abstract = {Surgical smoke has been a little discussed topic in the context of the current pandemic. Surgical smoke is generated during the cauterization of tissue with heat-generating devices and consists of 95\% water vapor and 5\% cellular debris in the form of particulate matter. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during tissue electrocautery. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. The higher the power of the high-frequency-device the larger the particles in size and the higher the resulting particle counts. The images taken show the densest smoke at 40W with artificial saliva. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms that the risk arising from surgical smoke should be considered. Furthermore, the experiments will provide the database for further numerical investigations.}, language = {en} }