@misc{BaldaranovKilicPflugetal., author = {Baldaranov, Dobri and Kilic, Mustafa and Pflug, Kenny and Theiss, Stephan and Leis, Alexander and Pemmerl, Josef and Pels, Hendrik and Boy, Sandra and Bogdahn, Ulrich and Schlachetzki, Felix}, title = {Prehospital stroke education in paramedics}, series = {European Journal of Neurology}, volume = {22}, journal = {European Journal of Neurology}, number = {Suppl. 1}, publisher = {Wiley}, pages = {800}, abstract = {Background and aims: Rapid pre-hospital identification of stroke symptoms result in therapy directed admission to dedicated stroke units. Widespread application of stroke scales reveal high sensitivity but low specificity, especially in non-academic first aid personal. In our previous work we show that prehospital stroke diagnostics based on neurolo-gical examination and transcranial color-coded Duplex so-nography (TCCS) is feasible and results in high sensitivity and specificity for middle cerebral artery / distal internal carotid artery occlusion. The aim of our ongoing study is to design and evaluate a dedicated stroke educational program for paramedics including transcranial ultrasound. This is a prerequisite for a telemedical decision support system in the absence of stroke experienced emergency doctors. Methods: We currently educate 6 paramedics in advanced stroke neurology and also transcranial ultrasound examina-tion during a course of 2 months. The web-based curricu-lum was designed in two parts. The first was theoretical and the second will be the real-life training under neurological supervision. For final assessment of the theoretical know-ledge a control group will be implemented without specific stroke expertise. The stroke-educated paramedics will have to assist stroke investigation, perform pre-hospital TCCS and enter the date in a mobile telestroke pad. The data set will be send to an in-hospital stroke physician. We will as-sess the mean time to reach the diagnostic assessment, its sensitivity and specificity and the patient outcome after 30 days. Results: Our study is ongoing Conclusion: The study just reach the 2 part and we will be glad to present our data on the meeting EAN 2015. Disclosure: Nothing to disclose}, language = {en} } @misc{Dendorfer, author = {Dendorfer, Sebastian}, title = {Biomechanische Aspekte bei Sportverletzungen}, series = {OT World Leipzig, Internationale Fachmesse und Weltkongress f{\"u}r Orthop{\"a}die und Rehatechnik, 10.-13. Mai 2022}, journal = {OT World Leipzig, Internationale Fachmesse und Weltkongress f{\"u}r Orthop{\"a}die und Rehatechnik, 10.-13. Mai 2022}, language = {de} } @misc{AuerReinkerSuessetal., author = {Auer, Simon and Reinker, Lukas and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Comparing calculated and measured muscle activity of thigh muscles in dynamic motion.}, series = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, journal = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, pages = {640}, language = {en} } @misc{MelznerPfeiferSuessetal., author = {Melzner, Maximilian and Pfeifer, Christian and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Muskuloskeletal analysis of elbow stability for common injury patterns}, series = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, journal = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, pages = {654}, language = {en} } @misc{MelznerDendorfer, author = {Melzner, Maximilian and Dendorfer, Sebastian}, title = {Biomechanik und muskuloskeletale Simulation}, series = {Jahreskongress des ISPO Deutschland e.V., 2./3. Juni 2022, Hedelberg}, journal = {Jahreskongress des ISPO Deutschland e.V., 2./3. Juni 2022, Hedelberg}, organization = {International Society for Prosthetics and Orthotics}, language = {de} } @misc{EgerBergstraesserDendorferetal., author = {Eger, Maximilian and Bergstraesser, Marcel and Dendorfer, Sebastian and Lenich, Andreas and Pfeifer, Christian}, title = {Influence of radial head prosthetic design on humeroradial stability: Validation of a test rig therefore}, series = {DOKU2022, Deutscher Kongress f{\"u}r Orthop{\"a}die und Unfallchirurgie, 25.-28. 10.2022, Berlin}, journal = {DOKU2022, Deutscher Kongress f{\"u}r Orthop{\"a}die und Unfallchirurgie, 25.-28. 10.2022, Berlin}, publisher = {German Medical Science GMS Publishing House}, address = {D{\"u}sseldorf}, doi = {10.3205/22dkou611}, url = {http://nbn-resolving.de/urn:nbn:de:0183-22dkou6115}, language = {en} } @misc{Dendorfer, author = {Dendorfer, Sebastian}, title = {KI-basierte mechanische Modelle f{\"u}r Pr{\"a}vention, Diagnostik und Rehabilitation}, series = {Serien-Webmeeting zu AI - KI-basierte Bildanalyse zur computer-unterst{\"u}tzten Frakturerkennung, 09.11.22}, journal = {Serien-Webmeeting zu AI - KI-basierte Bildanalyse zur computer-unterst{\"u}tzten Frakturerkennung, 09.11.22}, organization = {Deutsche Gesellschaft f{\"u}r Orthop{\"a}die und Orthop{\"a}dische Chirurgie}, language = {de} } @misc{BirkenmaierKrenkelLehle, author = {Birkenmaier, Clemens and Krenkel, Lars and Lehle, Karla}, title = {Linking flow conditions in membrane oxygenators to arrangements of multimeric von-Willebrand-factor as indication for coagulation}, series = {World Congress of Biomechanics 2018, Convention Centre Dublin, 8.-12. Juli 2018}, journal = {World Congress of Biomechanics 2018, Convention Centre Dublin, 8.-12. Juli 2018}, abstract = {Introduction Shear induced multimerisation of von-Willebrand-factor (vWF) is supposed to play an important role in coagulation inside extracorporeal membrane oxygenators. However, there is no proof that links observed vWF structures to computed or measured flow conditions. Methods The structures of multimeric vWF fibers, observed in clinically used membrane oxygenators is examined using immunofluorescence microscopy (IFM) using Carstairs' staining method (positive ethics committee vote). The flow around the membrane fibres inside the oxygenator is investigated in terms of shear rate, wall shear velocity and streamlines by using CFD (RANS, Carreau-Yasuda viscosity, geometry remodelled after high-resolution µCT-scans). By interpreting the histological and numerical results in this common context, indications for shear induced coagulation mechanisms can be identified. Results The fibre structures of multimeric vWF build regular but not exactly symmetric formations around the contact face (CF) between the crosswise stacked oxygenator fibres (OF), see fig.1B, vWF marked red. Annular around the CF arranged, cells are likely to be found, see fig.1B, nuclei marked blue. The computed streamlines around the OF show attached flow around the circular fibres. However, the irregular arrangement of real OF produce considerable cross flow between the interconnected neighbouring channels, in contrast to previous 2D-simulations. Thus, the CF are washed around closely by blood, also from neighbouring channels. The wall shear velocity streamlines form regular, slightly asymmetric shapes around the contact faces. The occurring maximum shear rates are in the range of 1,000 1/s. Discussion The shapes of vWF structures found in clinically used oxygenators match the computational results in terms of wall shear velocity and streamlines well. The accumulation of cells close to the CF can also be explained by fluid mechanics, as there are small shear gradients and slow velocities. However, occurring shear rates between OFs are too low to trigger multimerisation of vWF. That raises the question where in the circuit the actual activation of vWF is started and how, at least partly chained, vWF multimeres are attracted towards the OF surface. A next step will be the investigation of the actual shear rate triggered (or mediated) multimerisation of vWF. Towards this end, microfluidic experiments with shear triggered coagulation will be performed. Also of big interest is the computation of the flow situation in the oxygenator in proximity to chaining threads, which have been ignored in computations so far. However, first a realistic representation of the effective viscosity in computations is needed, which is not available yet.}, language = {en} } @misc{KoeglerIsmailRusavyetal., author = {K{\"o}gler, Michael and Ismail, Khaled M. and Rusavy, Zdenek and Kalis, Vladimir and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Influence of bed height and stance on accoucheurs lower back and glenohumeral load during simulated childbirth}, series = {31st meeting of Czech Urogynaecological Society, Prague, 2022}, journal = {31st meeting of Czech Urogynaecological Society, Prague, 2022}, language = {en} } @misc{Dendorfer, author = {Dendorfer, Sebastian}, title = {Muskuloskelettale Simulation - Implikationen f{\"u}r die H{\"u}ftendoprothetik}, series = {Prim{\"a}r- und Revisionsendoprothetik des H{\"u}ftgelenks Trends und zuk{\"u}nftige Herausforderungen, 11.-12.11.2022, OTH Ostbayerische Technische Hochschule, Regensburg}, journal = {Prim{\"a}r- und Revisionsendoprothetik des H{\"u}ftgelenks Trends und zuk{\"u}nftige Herausforderungen, 11.-12.11.2022, OTH Ostbayerische Technische Hochschule, Regensburg}, language = {de} } @misc{Dendorfer, author = {Dendorfer, Sebastian}, title = {Patientenindividuelle biomechanisch optimierte Rehabilitation}, series = {Prim{\"a}r- und Revisionsendoprothetik des Kniegelenks. Trends und zuk{\"u}nftige Herausforderungen. Regensburg 2023}, journal = {Prim{\"a}r- und Revisionsendoprothetik des Kniegelenks. Trends und zuk{\"u}nftige Herausforderungen. Regensburg 2023}, language = {de} } @misc{MelznerEngelhardtSuessetal., author = {Melzner, Maximilian and Engelhardt, Leonard and S{\"u}ß, Friedrich and Dendorfer, Sebastian}, title = {Sensitivity evaluation of a musculoskeletal hand model using Latin hypercube sampling}, series = {ESMAC 2020 Abstracts}, volume = {81}, journal = {ESMAC 2020 Abstracts}, number = {Suppl. 1}, publisher = {Elsevier}, doi = {10.1016/j.gaitpost.2020.08.008}, language = {en} } @misc{Dendorfer, author = {Dendorfer, Sebastian}, title = {Diagnostische Genauigkeit und klinische Anwendungen tragbarer Bewegungssensoren f{\"u}r die Kniegelenksrehabilitation}, address = {N{\"u}rnberg}, language = {de} } @misc{EngelhardtMelznerHavelkovaetal., author = {Engelhardt, Lucas and Melzner, Maximilian and Havelkova, Linda and Fiala, Pavel and Rybarova, Martina and Christen, Patrik and Dendorfer, Sebastian and Simon, Ulrich}, title = {A new musculoskeletal AnyBody detailed hand model}, series = {European Society of Biomechanics meeting 2019, Vienna, Austria}, journal = {European Society of Biomechanics meeting 2019, Vienna, Austria}, abstract = {The AnyBody™ Modeling System (AMS) [1], is an universally used musculoskeletal simulation software using inverse dynamics. Until now, no complete human hand model is known in the AMS. Also considering other musculoskeletal software platforms, just one detailed entire hand model is recently published [2] but is only based on one subject. The aim of this work is to implement a full detailed hand model for the AMS including all extrinsic and intrinsic muscles using data by the UWB gained through an anatomical study of ten cadaver hands.}, language = {en} } @misc{AuerNieblerEiglspergeretal., author = {Auer, Simon and Niebler, Michael and Eiglsperger, Josef and Kubowitsch, Simone and Renkawitz, Tobias and Achenbach, Leonard and Krutsch, Werner and Dendorfer, Sebastian}, title = {Cognitive stress increases muscle forces in dynamic football specific movements}, series = {European Society of Biomechanics meeting 2019, Vienna, Austria}, journal = {European Society of Biomechanics meeting 2019, Vienna, Austria}, language = {en} } @misc{AurbachSpickaSuessetal., author = {Aurbach, Maximilian and Spicka, Jan and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Musculoskeletal modelling of the shoulder - effects on muscle recruitment and joint reaction force}, series = {European Society of Biomechanics meeting 2019, Vienna, Austria}, journal = {European Society of Biomechanics meeting 2019, Vienna, Austria}, language = {en} } @misc{KubowitschSuessJansenetal., author = {Kubowitsch, Simone and S{\"u}ß, Franz and Jansen, Petra and Dendorfer, Sebastian}, title = {Effect of dual tasking on muscular imbalances}, series = {European Society of Biomechanics meeting 2019, Vienna, Austria}, journal = {European Society of Biomechanics meeting 2019, Vienna, Austria}, language = {en} } @misc{AuerReinkerDendorfer, author = {Auer, Simon and Reinker, Lukas and Dendorfer, Sebastian}, title = {Evaluation of muscle recruitment and muscle models in musculoskeletal simulation of dynamic motion}, series = {26th Congress of the European Society of Biomechanics, July 11-14, 2021, Milan, Italy}, journal = {26th Congress of the European Society of Biomechanics, July 11-14, 2021, Milan, Italy}, address = {Milan}, pages = {8}, abstract = {Musculoskeletal simulation plays an increasingly important role in sports biomechanics. In the last years, the field of application widened from orthopaedics and ergonomics to sports [1]. A muscle recruitment algorithm with a quadratic objective function is usually used to calculate muscle activity in dynamic movements. The agreement of calculated and measured thigh muscle activity has already been investigated [2]. They found a strong agreement for sprinting and running, while the correlation decreased for side-cutting manoeuvres. Nevertheless, the influence of different muscle recruitment criteria on muscle activity in dynamic musculoskeletal simulations is currently unknown. Hence, this study aimed to analyse the effect of different muscle recruitment criteria and muscle models on the correlation of numerical and measured muscle activity in highly dynamic movements.}, language = {en} } @misc{MelznerPfeiferAltetal., author = {Melzner, Maximilian and Pfeifer, Christian and Alt, V. and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {{\"A}nderung der Gelenkreaktionskraft bei Sch{\"a}digung des medialen Bandapparates im Ellenbogen}, series = {Zeitschrift fur Orthopadie und Unfallchirurgie}, volume = {158}, journal = {Zeitschrift fur Orthopadie und Unfallchirurgie}, number = {S01}, publisher = {Thieme}, doi = {10.1055/s-0040-1717270}, language = {de} } @article{ReinkerDendorfer, author = {Reinker, Lukas and Dendorfer, Sebastian}, title = {Evaluation of acceleration patterns during high-impact jumping exercises}, series = {Gait \& Posture}, volume = {100}, journal = {Gait \& Posture}, number = {Supplement 1, March}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, doi = {10.1016/j.gaitpost.2022.11.051}, pages = {93 -- 94}, language = {en} } @article{MuehlingSandriesserDendorferetal., author = {M{\"u}hling, Mischa and Sandriesser, Sabrina and Dendorfer, Sebastian and Augat, Peter}, title = {Assessment of implant internal stresses under physiological femoral loading: Translation to a simplified bending load model}, series = {Journal of Biomechanics}, journal = {Journal of Biomechanics}, number = {112229}, publisher = {Elsevier}, issn = {1873-2380}, doi = {10.1016/j.jbiomech.2024.112229}, pages = {17}, abstract = {The success of surgical treatment for fractures hinges on various factors, notably accurate surgical indication. The process of developing and certifying a new osteosynthesis device is a lengthy and costly process that requires multiple cycles of review and validation. Current methods, however, often rely on predecessor standards rather than physiological loads in specific anatomical locations. This study aimed to determine actual loads experienced by an osteosynthesis plate, exemplified by a standard locking plate for the femoral shaft, utilizing finite elements analysis (FEA) and to obtain the bending moments for implant development standard tests. A protocol was developed, involving the creation and validation of a fractured femur model fixed with a locking plate, mechanical testing, and FEA. The model's validation demonstrated exceptional accuracy in predicting deformations, and the FEA revealed peak stresses in the fracture bridging zone. Results of a parametric analysis indicate that larger fracture gaps significantly impact implant mechanical behavior, potentially compromising stability. This study underscores the critical need for realistic physiological conditions in implant evaluations, providing an innovative translational approach to identify internal loads and optimize implant designs. In conclusion, this research contributes to enhancing the understanding of implant performance under physiological conditions, promoting improved designs and evaluations in fracture treatments.}, language = {en} } @article{DendorferGschossman, author = {Dendorfer, Sebastian and Gschoßman, Lukas}, title = {Hightech in der Rehabiliation}, series = {BVOU Infobrief: Hightech in Orthop{\"a}die und Unfallchirurgie}, journal = {BVOU Infobrief: Hightech in Orthop{\"a}die und Unfallchirurgie}, number = {1}, publisher = {BVOU - Berufsverband f{\"u}r Orthop{\"a}die und Unfallchirurgie e.V.}, address = {Berlin}, issn = {2747-5913}, pages = {9 -- 11}, abstract = {Aufgrund der steigenden Lebenserwartung und dem damit einhergehenden demographischen Wandel wird der Bedarf an Rehabilitations-Behandlungen in absehbarer Zukunft stark ansteigen. Ein Beispiel f{\"u}r diesen Trend ist die physiotherapeutische Behandlung nach Erhalt einer Knie-Totalendoprothese (Knie-TEP). So gehen Modellrechnungen basierend auf dem Bev{\"o}lkerungswachstum und der bisherigen Pr{\"a}valenz von Knie-TEPs davon aus, dass die Anzahl an durchgef{\"u}hrten Eingriffen in einkommensstarken L{\"a}ndern wie Deutschland weiter zunehmen wird. Weiterhin stoßen traditionelle Rehabilitationsverfahren, gerade in strukturschwachen Regionen, schon heute an ihre Grenzen. Deutlich zu sehen war das w{\"a}hrend den Hochphasen der aktuellen Covid-19-Pandemie, als der Kontakt zwischen Therapeut*in und Patient*in fl{\"a}chendeckend eingeschr{\"a}nkt war. Eine erh{\"o}hte Nachfrage nach neuartigen Reha-Angeboten ist die logische Konsequenz. Innovative Konzepte sind daher dringend notwendig, um die daraus resultierenden technischen, sozialen und {\"o}konomischen Herausforderungen zu bew{\"a}ltigen.}, language = {de} } @article{RusavyCechovaDendorferetal., author = {Rusavy, Zdenek and Cechova, Hana and Dendorfer, Sebastian and Kalis, Vladimir and Ismail, Khaled M.}, title = {Is the Finnish grip tight enough? A manometric study of two manual perineal protection techniques}, series = {Acta Obstetricia et Gynecologica Scandinavica}, journal = {Acta Obstetricia et Gynecologica Scandinavica}, edition = {Early view}, publisher = {Wiley}, doi = {10.1111/aogs.15033}, language = {en} } @article{SchaefferHerrmannSchratzenstalleretal., author = {Schaeffer, Leon and Herrmann, David and Schratzenstaller, Thomas and Dendorfer, Sebastian and B{\"o}hm, Valter}, title = {Preliminary theoretical considerations on the stiffness characteristics of a tensegrity joint for the use in dynamic orthoses}, series = {Journal of Medical Robotics Research}, journal = {Journal of Medical Robotics Research}, publisher = {World Scientific}, doi = {10.1142/S2424905X23400081}, abstract = {Early motion therapy plays an important role for effective long-term healing of joint injuries. In many cases, conventional dynamic orthoses fail to address the intricate movement possibilities of the underlying joints, limited by their simplistic joint representations, often represented by revolute joints, enabling rotations by only one axis. In this paper, a two-dimensional compliant tensegrity joint for use in biomedical applications is investigated. It consists of two compressed members and five compliant tensioned members. Relative movement possibilities are realized by the intrinsic compliance of the structure. In the development of these systems, the first step is the determination of the static stable equilibrium. This analysis is conducted in this paper by considering the potential energy approach or by using the geometric nonlinear finite element method. The mechanical behavior of the structure is assessed with a specific emphasis on its mechanical compliance. The primary objective of this study is the investigation of the influence of structural parameters on the overall stiffness and movability of the structure. The results underscore the significant effect of member parameters on the stiffness and movability of the compliant tensegrity joint, particularly under varying load magnitudes. These findings provide insights for optimizing the joint's performance, contributing to its potential application in advanced orthotic and exoskeleton devices.}, language = {en} } @inproceedings{DendorferFeldottoWalchetal., author = {Dendorfer, Sebastian and Feldotto, Benedikt and Walch, Blasius and Koch, Patrick and Knoll, Alois}, title = {Co-Development of an Infant Prototype in Hardware and Simulation based on CT Imaging Data}, series = {IEEE International Conference on Cyborg and Bionic Systems (CBS), 2019, Munich}, booktitle = {IEEE International Conference on Cyborg and Bionic Systems (CBS), 2019, Munich}, pages = {6}, abstract = {The development of biomimetic robots has gained research interest in the last years as it may both help under-standing processes of motion execution in biological systems as well as developping a novel generation of intelligent and energy efficient robots. However, exact model generation that builds up on observations and robot design is very time intensive. In this paper we present a novel pipeline for co-development of biomimetic hardware and simulation models based on biological Computer Tomography (CT) data. For this purpose we exploit State of the Art rapid prototyping technologies such as 3D Printing and the Neurorobotics Platform for musculoskeletal simulations in virtual environments. The co-development integrates both advantages of virtual and physical experimental models and is expected to increase development speed of controllers that can be tested on the simulated counterpart before application to a printed robot model. We demonstrate the pipeline by generating a one year old infant model as a musculoskeletal simulation model and a print-in-place 3D printed skeleton as a single movable part. Even though we hereonly introduce the initial body generation and only a first testsetup for a modular sensory and control framework, we can clearly spot advantages in terms of rapid model generation and highly biological related models. Engineering costs are reducedand models can be provided to a wide research community for controller testing in an early development phase.}, subject = {Biomechanische Analyse}, language = {en} } @article{SchmitzNeumannNeumannetal., author = {Schmitz, Paul and Neumann, Christoph Cornelius and Neumann, Carsten and Nerlich, Michael and Dendorfer, Sebastian}, title = {Biomechanical analysis of iliac crest loading following cortico-cancellous bone harvesting}, series = {Journal of Orthopaedic Surgery and Research}, volume = {13}, journal = {Journal of Orthopaedic Surgery and Research}, number = {108}, publisher = {Springer Nature}, doi = {10.1186/s13018-018-0822-1}, pages = {1 -- 8}, abstract = {Background Iliac crest bone harvesting is a frequently performed surgical procedure widely used to treat bone defects. The objective of this study is to assess the biomechanical quantities related to risk for pelvic fracture after harvesting an autologous bone graft at the anterior iliac crest. Methods Finite element models with a simulated harvest site (sized 15 × 20 mm, 15 × 35 mm, 30 × 20 mm and 30 × 35 mm) in the iliac wing are created. The relevant loading case is when the ipsilateral leg is lifted off the ground. Musculoskeletal analysis is utilized to compute the muscle and joint forces involved in this motion. These forces are used as boundary conditions for the finite element analyses. Bone tissue stress is analyzed. Results Critical stress peaks are located between the anterior superior iliac spine (ASIS) and the anterior edge of the harvest site. Irrespective of the graft size, the iliac wing does not show any significant stress peaks with the harvest site being 20 to 25 mm posterior to the ASIS. The harvest area itself inhibits the distribution of the forces applied on the ASIS to extend to the posterior iliac wing. This leads to a lack of stress posterior to the harvest site. A balanced stress distribution with no stress peaks appears when the bone graft is taken below the iliac crest. Conclusion A harvest site located at least 20 to 25 mm posterior to the ASIS should be preferred to minimize the risk of iliac fatigue fracture.}, subject = {Beckenkammknochen}, language = {en} } @article{VoellnerWeberWeberetal., author = {V{\"o}llner, Florian and Weber, Tim A. and Weber, Markus and Renkawitz, Tobias and Dendorfer, Sebastian and Grifka, Joachim and Craiovan, Benjamin}, title = {A simple method for determining ligament stiffness during total knee arthroplasty in vivo}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Nature}, doi = {10.1038/s41598-019-41732-x}, pages = {1 -- 8}, abstract = {A key requirement in both native knee joints and total knee arthroplasty is a stable capsular ligament complex. However, knee stability is highly individual and ranges from clinically loose to tight. So far, hardly any in vivo data on the intrinsic mechanical of the knee are available. This study investigated if stiffness of the native ligament complex may be determined in vivo using a standard knee balancer. Measurements were obtained with a commercially available knee balancer, which was initially calibrated in vitro. 5 patients underwent reconstruction of the force-displacement curves of the ligament complex. Stiffness of the medial and lateral compartments were calculated to measure the stability of the capsular ligament complex. All force-displacement curves consisted of a non-linear section at the beginning and of a linear section from about 80 N onwards. The medial compartment showed values of 28.4 ± 1.2 N/mm for minimum stiffness and of 39.9 ± 1.1 N/mm for maximum stiffness; the respective values for the lateral compartment were 19.9 ± 0.9 N/mm and 46.6 ± 0.8 N/mm. A commercially available knee balancer may be calibrated for measuring stiffness of knee ligament complex in vivo, which may contribute to a better understanding of the intrinsic mechanical behaviour of knee joints.}, subject = {Biomechanische Analyse}, language = {en} } @article{BenditzAuerSpoerreretal., author = {Benditz, Achim and Auer, Simon and Sp{\"o}rrer, J.F. and Wolkerstorfer, S. and Grifka, Joachim and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Regarding loads after spinal fusion, every level should be seen separately: a musculoskeletal analysis}, series = {European Spine Journal}, volume = {27}, journal = {European Spine Journal}, number = {8}, publisher = {Springer-Verlag}, doi = {10.1007/s00586-018-5476-5}, pages = {1905 -- 1910}, abstract = {The number of spinal fusion surgeries is steadily increasing and biomechanical consequences are still in debate. The aim of this study is to provide biomechanical insights into the sagittal balance of the spine and to compare spinal load before and after spinal fusion. METHOD: The joint reaction forces of 52 patients were analyzed in proximo-distal and antero-posterior direction from the levels T12-L1 to L5-S1 using musculoskeletal simulations. RESULTS: In 104 simulations, pre-surgical forces were equal to post-surgical. The levels L4-L5 and T12-L1, however, showed increased spinal forces compression forces with higher sagittal displacement. Improved restauration of sagittal balance was accompanied by lower spinal load. AP shear stress, interestingly decreased with sagittal imbalance. CONCLUSION: Imbalanced spines have a risk of increased compression forces at Th12-L1. L4-L5 always has increased spinal loads. These slides can be retrieved under Electronic Supplementary Material.}, subject = {Biomechanische Analyse}, language = {en} } @inproceedings{JungtaeublSchmitzGrossetal., author = {Jungt{\"a}ubl, Dominik and Schmitz, Paul and Gross, Simon and Dendorfer, Sebastian}, title = {FEA of the transiliacal internal fixator as an osteosynthesis of pelvic ring fractures}, series = {CMBEBIH 2017, Proceedings of the International Conference on Medical and Biological Engineering 2017}, booktitle = {CMBEBIH 2017, Proceedings of the International Conference on Medical and Biological Engineering 2017}, editor = {Badnjevic, Almir}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-4165-5}, doi = {10.1007/978-981-10-4166-2_32}, pages = {212 -- 217}, abstract = {Common Schanz screw systems can be used to stabilize pelvic ring fractures. In order to accommodate for different patient's requirements, implants can be placed in cranio-caudal direction into the os ilium (T1), or into the supraacetabular bone canal, and thus, in dorso-ventral direction (T2). Whereas both techniques are currently used, no data of the biomechanical behavior is available up to this date. The aim of this study is to analyze, whether T2 shows biomechanical advantages with respect to tissue and implant stresses due to the enlarged bone-implant interface. Forces acting on the pelvis were analyzed using motion capture data of a gait cycle obtained by the utilization of a musculoskeletal simulation program. A three dimensional finite element (FE) model of the pelvis with grayscale-based material properties was generated. The muscle and joint reaction forces at toe-off were applied to the FE model and instable pelvis fractures were implemented. The osteosynthesis systems were positioned within the model in order to enable the comparison between the two different surgical techniques. Stresses and displacements were analyzed for bone tissue, fracture zone and implant. T2 lead to approx. 30\% larger displacements in the fracture zone. Von-Mises stresses were larger for T2 in the implant (80 MPa vs. 227 MPa), whereas T1 leads to larger stresses in the bone tissue (200 MPa vs. 140 MPa). Both implantation techniques showed a good biomechanical behavior. Differences could be found with respect to tissue strains and deformations in the fracture zone. If bone quality or fracture healing are of concern, T2 or T1 should be used, respectively. However, both techniques seem to be applicable for cases with no special requirements. Further analyses aim to investigate the behavior under cyclic loading.}, subject = {Beckenbruch}, language = {en} } @article{RenkawitzWeberDullienetal., author = {Renkawitz, Tobias and Weber, Tim A. and Dullien, Silvia and Woerner, Michael and Dendorfer, Sebastian and Grifka, Joachim and Weber, Markus}, title = {Leg length and offset differences above 5 mm after total hip arthroplasty are associated with altered gait kinematics}, series = {Gait \& Posture}, volume = {vol. 49}, journal = {Gait \& Posture}, doi = {10.1016/j.gaitpost.2016.07.011}, pages = {196 -- 201}, abstract = {We aimed to investigate the relationship between postoperative leg length/offset (LL/OS) reconstruction and gait performance after total hip arthroplasty (THA). In the course of a prospective randomized controlled trial, 60 patients with unilateral hip arthrosis received cementless THA through a minimally-invasive anterolateral surgical approach. One year post-operatively, LL and global OS restoration were analyzed and compared to the contralateral hip on AP pelvic radiographs. The combined postoperative limb length/OS reconstruction of the operated hip was categorized as restored (within 5 mm) or non-restored (more than 5 mm reduction or more than 5 mm increment). The acetabular component inclination, anteversion and femoral component anteversion were evaluated using CT scans of the pelvis and the femur. 3D gait analysis of the lower extremity and patient related outcome measures (HHS, HOOS, EQ-5D) were obtained pre-operatively, six months and twelve months post-operatively by an observer blinded to radiographic results. Component position of cup and stem was comparable between the restored and non-restored group. Combined LL and OS restoration within 5 mm resulted in higher Froude number (p < 0.001), normalized walking speed (p < 0.001) and hip range-of-motion (ROM) (p = 0.004) during gait twelve months postoperatively, whereas gait symmetry was comparable regardless of LL and OS reconstruction at both examinations. Clinical scores did not show any relevant association between the accuracy of LL or OS reconstruction and gait six/twelve months after THA. In summary, postoperative LL/OS discrepancies larger than 5 mm relate to unphysiological gait kinematics within the first year after THA. DRKS00000739, German Clinical Trials Register.}, language = {en} } @article{PutzerAuerMalpicaetal., author = {Putzer, Michael and Auer, Stefan and Malpica, William and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion}, series = {BMC Musculoskeletal Disorders}, volume = {17}, journal = {BMC Musculoskeletal Disorders}, number = {95}, doi = {10.1186/s12891-016-0942-x}, abstract = {Background There is a wide range of mechanical properties of spinal ligaments documented in literature. Due to the fact that ligaments contribute in stabilizing the spine by limiting excessive intersegmental motion, those properties are of particular interest for the implementation in musculoskeletal models. The aim of this study was to investigate the effect of varying ligament stiffness on the kinematic behaviour of the lumbar spine. Methods A musculoskeletal model with a detailed lumbar spine was modified according to fluoroscopic recordings and corresponding data files of three different subjects. For flexion, inverse dynamics analysis with a variation of the ligament stiffness matrix were conducted. The influence of several degrees of ligament stiffness on the lumbar spine model were investigated by tracking ligament forces, disc forces and resulting moments generated by the ligaments. Additionally, the kinematics of the motion segments were evaluated. Results An increase of ligament stiffness resulted in an increase of ligament and disc forces, whereas the relative change of disc force increased at a higher rate at the L4/L5 level (19 \%) than at the L3/L4 (10 \%) level in a fully flexed posture. The same behaviour applied to measured moments with 67 \% and 45 \%. As a consequence, the motion deflected to the lower levels of the lumbar spine and the lower discs had to resist an increase in loading. Conclusions Higher values of ligament stiffness over all lumbar levels could lead to a shift of the loading and the motion between segments to the lower lumbar levels. This could lead to an increased risk for the lower lumbar parts.}, language = {en} } @article{WeberDendorferBulstraetal., author = {Weber, Tim A. and Dendorfer, Sebastian and Bulstra, Sjoerd K. and Grifka, Joachim and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias}, title = {Gait six month and one-year after computer assisted Femur First THR vs. conventional THR. Results of a patient- and observer- blinded randomized controlled trial}, series = {Gait \& Posture}, volume = {vol. 49}, journal = {Gait \& Posture}, doi = {10.1016/j.gaitpost.2016.06.035}, pages = {418 -- 425}, abstract = {A prospective randomized controlled trial is presented that is used to compare gait performance between the computer assisted Femur First (CAS FF) operation method and conventional THR (CON). 60 patients underwent a 3D gait analysis of the lower extremity at pre-operative, 6 months post-operative and twelve months post-operative. Detailed verification experiments were facilitated to ensure the quality of data as well as to avoid over-interpreting of the data. The results confirm a similar data-quality as reported in the literature. Walking speed, range of motion and symmetry thereof improved over the follow-up period, without significant differences between the groups. While all parameters do significantly increase over the follow-up period for both groups, there were no significant differences between them at any given time-point. Patients undergoing CAS FF showed a trend to improved hip flexion angle indicating a possible long-term benefit.}, language = {en} } @inproceedings{DendorferKubowitschSuess, author = {Dendorfer, Sebastian and Kubowitsch, Simone and S{\"u}ß, Franz}, title = {How to determine the effect of working conditions on the human body}, series = {11th International Scientific Conference on Production Engineering DEVELOPMENT AND MODERNIZATION OF PRODUCTION (RIM 2017), Sarajevo, Bosnia and Herzegovina}, booktitle = {11th International Scientific Conference on Production Engineering DEVELOPMENT AND MODERNIZATION OF PRODUCTION (RIM 2017), Sarajevo, Bosnia and Herzegovina}, abstract = {Work places and conditions strains the human body, both psychologically and biomechanically. In order to analyse working conditions and in the following to improve them, detailed knowledge about the effect of the different stressors on the body is needed. This manuscript discusses methods on how to evaluate biomechanical and mental loading and its effect on the musculoskeletal system. A possible workflow for the analysis is presented.}, subject = {Arbeitsbedingungen}, language = {en} } @article{RenkawitzWeberSpringorumetal., author = {Renkawitz, Tobias and Weber, Markus and Springorum, H.-R. and Sendtner, E. and Woerner, Michael and Ulm, K. and Weber, Tim and Grifka, Joachim}, title = {Impingement-free range of motion, cup coverage and early clinical results between femur first navigation and conventional total hip arthroplasty: a randomised controlled trial}, series = {Journal of Bone \& Joint Surgery}, volume = {97-B}, journal = {Journal of Bone \& Joint Surgery}, doi = {10.1302/0301-620X.97B7.34729}, pages = {890 -- 898}, abstract = {We report the kinematic and early clinical results of a patient- and observer-blinded randomised controlled trial in which CT scans were used to compare potential impingement-free range of movement (ROM) and acetabular component cover between patients treated with either the navigated 'femur-first' total hip arthroplasty (THA) method (n = 66; male/female 29/37, mean age 62.5 years; 50 to 74) or conventional THA (n = 69; male/female 35/34, mean age 62.9 years; 50 to 75). The Hip Osteoarthritis Outcome Score, the Harris hip score, the Euro-Qol-5D and the Mancuso THA patient expectations score were assessed at six weeks, six months and one year after surgery. A total of 48 of the patients (84\%) in the navigated 'femur-first' group and 43 (65\%) in the conventional group reached all the desirable potential ROM boundaries without prosthetic impingement for activities of daily living (ADL) in flexion, extension, abduction, adduction and rotation (p = 0.016). Acetabular component cover and surface contact with the host bone were > 87\% in both groups. There was a significant difference between the navigated and the conventional groups' Harris hip scores six weeks after surgery (p = 0.010). There were no significant differences with respect to any clinical outcome at six months and one year of follow-up. The navigated 'femur-first' technique improves the potential ROM for ADL without prosthetic impingement, although there was no observed clinical difference between the two treatment groups.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @article{WeberWeberWoerneretal., author = {Weber, Markus and Weber, Tim A. and Woerner, Michael and Craiovan, Benjamin and Worlicek, Michael and Winkler, Sebastian and Grifka, Joachim and Renkawitz, Tobias}, title = {The impact of standard combined anteversion definitions on gait and clinical outcome within one year after total hip arthroplasty}, series = {International Orthopaedics}, volume = {39}, journal = {International Orthopaedics}, number = {12}, doi = {10.1007/s00264-015-2777-8}, pages = {2323 -- 2333}, abstract = {Different target areas within the concept of combined cup and stem anteversion have been published for total hip arthroplasty (THA). We asked whether component positioning according to eight standard combined anteversion rules is associated with (1) more physiological gait patterns, (2) higher improvement of gait variables and (3) better clinical outcome after THA.In a prospective clinical study, 60 patients received cementless THA through an anterolateral MIS approach in a lateral decubitus position. Six weeks postoperatively, implant position was analysed using 3D-CT by an independent external institute. Preoperatively, six and 12 months postoperatively range of motion, normalized walking speed and hip flexion symmetry index were measured using 3D motion-capture gait analysis. Patient-related outcome measures (HHS, HOOS, EQ-5D) were obtained by an observer blinded to 3D-CT results. Eight combined anteversion definitions and Lewinnek's "safe zone" were evaluated regarding their impact on gait patterns and clinical outcome.Combined cup and stem anteversion according to standard combined anteversion definitions as well as cup placement within Lewinnek's "safe zone" did not influence range of motion, normalized walking speed and/or hip flexion symmetry index six and 12 months after THA. Similarly, increase of gait parameters within the first year after THA was comparable between all eight combined anteversion rules. Clinical outcome measures like HHS, HOOS and EQ-5D did not show any benefit for either of the combined anteversion definitions.Standard combined cup and stem anteversion rules do not improve postoperative outcome as measured by gait analysis and clinical scores within one year after THA.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @article{IgnasiakDendorferFerguson, author = {Ignasiak, Dominika and Dendorfer, Sebastian and Ferguson, Stephen J.}, title = {Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading}, series = {Journal of Biomechanics}, volume = {vol. 49}, journal = {Journal of Biomechanics}, number = {6}, publisher = {Elsevier Science}, doi = {10.1016/j.jbiomech.2015.10.010}, pages = {959 -- 966}, abstract = {Musculoskeletal modeling offers an invaluable insight into the spine biomechanics. A better understanding of thoracic spine kinetics is essential for understanding disease processes and developing new prevention and treatment methods. Current models of the thoracic region are not designed for segmental load estimation, or do not include the complex construct of the ribcage, despite its potentially important role in load transmission. In this paper, we describe a numerical musculoskeletal model of the thoracolumbar spine with articulated ribcage, modeled as a system of individual vertebral segments, elastic elements and thoracic muscles, based on a previously established lumbar spine model and data from the literature. The inverse dynamics simulations of the model allow the prediction of spinal loading as well as costal joints kinetics and kinematics. The intradiscal pressure predicted by the model correlated well (R2=0.89) with reported intradiscal pressure measurements, providing a first validation of the model. The inclusion of the ribcage did not affect segmental force predictions when the thoracic spine did not perform motion. During thoracic motion tasks, the ribcage had an important influence on the predicted compressive forces and muscle activation patterns. The compressive forces were reduced by up to 32\%, or distributed more evenly between thoracic vertebrae, when compared to the predictions of the model without ribcage, for mild thoracic flexion and hyperextension tasks, respectively. The presented musculoskeletal model provides a tool for investigating thoracic spine loading and load sharing between vertebral column and ribcage during dynamic activities. Further validation for specific applications is still necessary.}, subject = {Brustwirbels{\"a}ule}, language = {en} } @article{WeberDendorferGrifkaetal., author = {Weber, Tim A. and Dendorfer, Sebastian and Grifka, Joachim and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias}, title = {Does Computer-Assisted Femur First THR Improve Musculoskeletal Loading Conditions?}, series = {BioMed Research International}, volume = {2015}, journal = {BioMed Research International}, editor = {Takagi, Michiaki}, doi = {10.1155/2015/625317}, pages = {ID 625317}, abstract = {We have developed a novel, computer-assisted operation method for minimal-invasive total hip replacement (THR) following the concept of "femur first/combined anteversion," which incorporates various aspects of performing a functional optimization of the prosthetic stem and cup position (CAS FF). The purpose of this study is to assess whether the hip joint reaction forces and patient's gait parameters are being improved by CAS FF in relation to conventional THR (CON). We enrolled 60 patients (28 CAS FF/32 CON) and invited them for gait analysis at three time points (preoperatively, postop six months, and postop 12 months). Data retrieved from gait analysis was processed using patient-specific musculoskeletal models. The target parameters were hip reaction force magnitude (hrf), symmetries, and orientation with respect to the cup. Hrf in the CAS FF group were closer to a young healthy normal. Phase-shift symmetry showed an increase in the CAS FF group. Hrf orientation in the CAS FF group was closer to optimum, though no edge or rim-loading occurred in the CON group as well. The CAS FF group showed an improved hrf orientation in an early stage and a trend to an improved long-term outcome.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @article{WeberAlMunajjedVerkerkeetal., author = {Weber, Tim and Al-Munajjed, Amir Andreas and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian and Renkawitz, Tobias}, title = {Influence of minimally invasive total hip replacement on hip reaction forces and their orientations}, series = {Journal of Orthopaedic Research}, volume = {32}, journal = {Journal of Orthopaedic Research}, number = {12}, doi = {10.1002/jor.22710}, pages = {1680 -- 1687}, abstract = {Minimally invasive surgery (MIS) is becoming increasingly popular. Supporters claim that the main advantages of MIS total hip replacement (THR) are less pain and a faster rehabilitation and recovery. Critics claim that safety and efficacy of MIS are yet to be determined. We focused on a biomechanical comparison between surgical standard and MIS approaches for THR during the early recovery of patients. A validated, parameterized musculoskeletal model was set to perform a squat of a 50th percentile healthy European male. A bilateral motion was chosen to investigate effects on the contralateral side. Surgical approaches were simulated by excluding the incised muscles from the computations. Resulting hip reaction forces and their symmetry and orientation were analyzed. MIS THR seemed less influential on the symmetry index of hip reaction forces between the operated and nonoperated leg when compared to the standard lateral approach. Hip reaction forces at peak loads of the standard transgluteal approach were 24\% higher on the contralateral side when compared to MIS approaches. Our results suggest that MIS THR contributes to a greater symmetry of hip reaction forces in absolute value as well as force-orientation following THR.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @article{PutzerEhrlichRasmussenetal., author = {Putzer, Michael and Ehrlich, Ingo and Rasmussen, John and Gebbeken, Norbert and Dendorfer, Sebastian}, title = {Sensitivity of lumbar spine loading to anatomical parameters}, series = {Journal of Biomechanics}, volume = {49}, journal = {Journal of Biomechanics}, number = {6}, publisher = {Elsevier Science}, doi = {10.1016/j.jbiomech.2015.11.003}, pages = {953 -- 958}, abstract = {Musculoskeletal simulations of lumbar spine loading rely on a geometrical representation of the anatomy. However, this data has an inherent inaccuracy. This study evaluates the influence of defined geometrical parameters on lumbar spine loading utilising five parametrised musculoskeletal lumbar spine models for four different postures. The influence of the dimensions of vertebral body, disc, posterior parts of the vertebrae as well as the curvature of the lumbar spine was studied. Additionally, simulations with combinations of selected parameters were conducted. Changes in L4/L5 resultant joint force were used as outcome variable. Variations of the vertebral body height, disc height, transverse process width and the curvature of the lumbar spine were the most influential. These parameters can be easily acquired from X-rays and should be used to morph a musculoskeletal lumbar spine model for subject-specific approaches with respect to bone geometry. Furthermore, the model was very sensitive to uncommon configurations and therefore, it is advised that stiffness properties of discs and ligaments should be individualised.}, subject = {Wirbels{\"a}ule}, language = {en} } @article{DendorferWeberKennedy, author = {Dendorfer, Sebastian and Weber, Tim and Kennedy, O.}, title = {Musculoskeletal modeling for hip replacement outcome analyses and other applications}, series = {The Journal of the American Academy of Orthopaedic Surgeons}, volume = {22}, journal = {The Journal of the American Academy of Orthopaedic Surgeons}, number = {4}, doi = {10.5435/JAAOS-22-04-268}, pages = {268 -- 269}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @article{PenzkoferBarnsteinerDendorfer, author = {Penzkofer, Rainer and Barnsteiner, K. and Dendorfer, Sebastian}, title = {The influence of age, shoe type and kicking direction on the severity of head trauma}, series = {Journal of Forensic Biomechanics}, volume = {5}, journal = {Journal of Forensic Biomechanics}, number = {1}, doi = {10.4172/2090-2697.1000116}, abstract = {In the last few years, increasingly kicks to the head were observed as a criminal offense. This study examined the influence of age, shoe type and kicking direction on the severity of head trauma. Male test persons were divided into two groups "Old" and "Young". Both groups were equipped with light sneakers and combat boots. A standard laboratory crash dummy was used to simulate the victim's body. First, the dummy's head, free floating above the ground, was kicked vertically. Second, the dummy's head was kicked horizontally. Established injury criteria were used to quantify the injury risk. No influence concerning the type of foot wear and no difference between the groups "Old" and "Young" could be found. For all analyses, kicking vertically generally lead to a higher risk for the subject compared to kicking horizontally. In this study, only the integral effect of the kicks could be analyzed. A detailed injury pattern cannot directly be derived from the data. Nevertheless, the presented data show the massive potential of injuries associated with head kicks.}, subject = {Kopfverletzung}, language = {en} } @article{DePieriAtzoriFergusonetal., author = {De Pieri, Enrico and Atzori, Federica and Ferguson, Stephen J. and Dendorfer, Sebastian and Leunig, Michael and Aepli, Martin}, title = {Contact force path in total hip arthroplasty: effect of cup medialisation in a whole-body simulation}, series = {HIP International}, volume = {31}, journal = {HIP International}, number = {5}, publisher = {Sage}, doi = {10.1177/1120700020917321}, pages = {624 -- 631}, abstract = {Background: Cup medialisation down to the true acetabular floor in total hip arthroplasty with a compensatory femoral offset increase seems to be mechanically advantageous for the abductor muscles due to the relocation of the lever arms (body weight lever arm decreased, abductor lever arm increased). However, limited information is currently available about the effects of this reconstruction type at the head cup interface, compared to an anatomical reconstruction that maintains the natural lever arms. Through a whole-body simulation analysis, we compared medialised versus anatomical reconstruction in THA to analyse the effects on: (1) contact force magnitude at the head cup interface; (2) contact force path in the cup; and (3) abductor activity. Methods: Musculoskeletal simulations were performed to calculate the above-mentioned parameters using inverse dynamics analysis. The differences between the virtually implanted THAs were calculated to compare the medialised versus anatomical reconstruction. Results: Cup medialisation with compensatory femoral offset increase led to: (1) a reduction in contact force magnitude at the head cup interface up to 6.6\%; (2) a similar contact force path in the cup in terms of sliding distance and aspect ratio; and (3) a reduction in abductor activity up to 17.2\% (gluteus medius). Conclusions: In our opinion, these potential biomechanical gains do not generally justify a fully medialised reconstruction, especially in younger patients that are more likely to undergo revision surgery in their lifetime. Cup medialisation should be performed until sufficient press fit and bony coverage of a properly sized and oriented cup can be achieved.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @article{AurbachSpickaSuessetal., author = {Aurbach, Maximilian and Spicka, Jan and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Evaluation of musculoskeletal modelling parameters of the shoulder complex during humeral abduction above 90°}, series = {Journal of Biomechanics}, volume = {106}, journal = {Journal of Biomechanics}, number = {June}, publisher = {Elsevier}, doi = {10.1016/j.jbiomech.2020.109817}, abstract = {Based on electromyographic data and force measurements within the shoulder joint, there is an indication that muscle and resulting joint reaction forces keep increasing over an abduction angle of 90°. In inverse dynamics models, no single parameter could be attributed to simulate this force behaviour accordingly. The aim of this work is to implement kinematic, kinetic and muscle model modifications to an existing model of the shoulder (AnyBody™) and assess their single and combined effects during abduction up to 140° humeral elevation. The kinematics and the EMG activity of 10 test subjects were measured during humeral abduction. Six modifications were implemented in the model: alternative wrapping of the virtual deltoid muscle elements, utilization of a three element Hill model, strength scaling, motion capture driven clavicle elevation/protraction, translation of the GH joint in dependency of the acting forces and an alteration of the scapula/clavicle rhythm. From the six modifications, 16 different combinations were considered. Parameter combinations with the Hill model changed the resultant GH joint reaction force and led to an increase in force during abduction of the humerus above 90°. Under the premise of muscle activities and forces within the GH joint rising after 90° of humeral abduction, we propose that the Hill type muscle model is a crucial parameter for accurately modelling the shoulder. Furthermore, the outcome of this study indicates that the Hill model induces the co-contraction of the muscles of the shoulder without the need of an additional stability criterion for an inverse dynamics approach.}, subject = {Schultergelenk}, language = {en} } @article{AurbachŠpičkaSuessetal., author = {Aurbach, Maximilian and Špička, Jan and S{\"u}ß, Franz and Vychytil, J. and Havelkov{\´a}, Leonard and Ryba, T. and Dendorfer, Sebastian}, title = {Torus obstacle method as a wrapping approach of the deltoid muscle group for humeral abduction in musculoskeletal simulation}, series = {Journal of Biomechanics}, volume = {109}, journal = {Journal of Biomechanics}, number = {August}, publisher = {Elsevier}, doi = {10.1016/j.jbiomech.2020.109864}, abstract = {Musculoskeletal models of the shoulder complex are valuable research aids to investigate tears of the supraspinatus and the resulting mechanical impact during abduction of the humerus. One of the major contributors to this motion is the deltoid muscle group and for this, an accurate modeling of the lines of action is indispensable. The aim of this work was to utilize a torus obstacle wrapping approach for the deltoids of an existing shoulder model and assess the feasibility of the approach during humeral abduction. The shoulder model from the AnyBody™ modeling system was used as a platform. The size of the tori is based on a magnetic resonance imaging (MRI) approach and several kinematic couplings are implemented to determine the trajectories of the tori during abduction. To assess the model behavior, the moment arms of the virtual muscle elements and the resultant glenohumeral joint reaction force (GHJF) were compared with reference data from the literature during abduction of the humerus in the range 20°-120°. The root mean square error for the anterior, lateral and posterior part between the simulated muscle elements and reference data from the literature was 3.9, 1.7 and 5.8 mm, respectively. The largest deviation occurred on the outer elements of the muscle groups, with 12.6, 10.4 and 20.5 mm, respectively. During abduction, there is no overlapping of the muscle elements and these are in continuous contact with the torus obstacles, thus enabling a continuous force transmission. This results in a rising trend of the resultant GHJF. The torus obstacle approach as a wrapping method for the deltoid muscles provides a guided muscle pathing by simultaneously approximating the curvature of the deltoid muscle. The results from the comparison of the simulated moment arms and the resultant GHJF are in accordance with those in the literature in the range 20°-120° of abduction. Although this study shows the strength of the torus obstacle as a wrapping approach, the method of fitting the tori according to MRI data was not suitable. A cadaver study is recommended to better validate and mathematically describe the torus approach.}, language = {en} } @article{WeberSuessJerabeketal., author = {Weber, Markus and Suess, Franz and Jerabek, Seth and Meyer, Matthias and Grifka, Joachim and Renkawitz, Tobias and Dendorfer, Sebastian}, title = {Kinematic pelvic tilt during gait alters functional cup position in total hip arthroplasty}, series = {Journal of Orthopaedic Research}, volume = {40}, journal = {Journal of Orthopaedic Research}, number = {4}, publisher = {Wiley}, issn = {1554-527X}, doi = {10.1002/jor.25106}, pages = {846 -- 853}, abstract = {Static pelvic tilt impacts functional cup position in total hip arthroplasty (THA). In the current study we investigated the effect of kinematic pelvic changes on cup position. In the course of a prospective controlled trial postoperative 3D-computed tomography (CT) and gait analysis before and 6 and 12 months after THA were obtained in 60 patients. Kinematic pelvic motion during gait was measured using Anybody Modeling System. By fusion with 3D-CT, the impact of kinematic pelvic tilt alterations on cup anteversion and inclination was calculated. Furthermore, risk factors correlating with high pelvic mobility were evaluated. During gait a high pelvic range of motion up to 15.6° exceeding 5° in 61.7\% (37/60) of patients before THA was found. After surgery, the pelvis tilted posteriorly by a mean of 4.0 ± 6.6° (p < .001). The pelvic anteflexion led to a mean decrease of -1.9 ± 2.2° (p < .001) for cup inclination and -15.1 ± 6.1° (p < .001) for anteversion in relation to the anterior pelvic plane (APP). Kinematic pelvic changes resulted in a further change up to 2.3° for inclination and up to 12.3° for anteversion. In relation to the preoperative situation differences in postoperative cup position ranged from -4.4 to 4.6° for inclination and from -7.8 to 17.9° for anteversion, respectively. Female sex (p < .001) and normal body weight (p < .001) correlated with high alterations in pelvic tilt. Kinematic pelvic changes highly impact cup anteversion in THA. Surgeons using the APP as reference should aim for a higher anteversion of about 15° due to the functional anteflexion of the pelvis during gait.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @article{WeberMerleNawabietal., author = {Weber, Markus and Merle, Christian and Nawabi, Danyal H. and Dendorfer, Sebastian and Grifka, Joachim and Renkawitz, Tobias}, title = {Inaccurate offset restoration in total hip arthroplasty results in reduced range of motion}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, number = {13208}, publisher = {Nature}, doi = {10.1038/s41598-020-70059-1}, pages = {9}, abstract = {Offset restoration in total hip arthroplasty (THA) is associated with postoperative range of motion (ROM) and gait kinematics. We aimed to research into the impact of high offset (HO) and standard stems on postoperative ROM. 121 patients received cementless THA through a minimally-invasive anterolateral approach. A 360° hip ROM analysis software calculated impingement-free hip movement based on postoperative 3D-CTs compared to ROM values necessary for activities of daily living (ADL). The same model was then run a second time after changing the stem geometry between standard and HO configuration with the implants in the same position. HO stems showed higher ROM for all directions between 4.6 and 8.9° (p < 0.001) compared with standard stems but with high interindividual variability. In the subgroup with HO stems for intraoperative offset restoration, the increase in ROM was even higher for all ROM directions with values between 6.1 and 14.4° (p < 0.001) compared to offset underrestoration with standard stems. Avoiding offset underrestoration resulted in a higher amount of patients of over 20\% for each ROM direction that fulfilled the criteria for ADL (p < 0.001). In contrast, in patients with standard stems for offset restoration ROM did increase but not clinically relevant by offset overcorrection for all directions between 3.1 and 6.1° (p < 0.001). Offset overcorrection by replacing standard with HO stems improved ROM for ADL in a low number of patients below 10\% (p > 0.03). Patient-individual restoration of offset is crucial for free ROM in THA. Both over and underrestoration of offset should be avoided.}, language = {en} } @article{MelznerSuessDendorfer, author = {Melzner, Maximilian and Suess, Franz and Dendorfer, Sebastian}, title = {The impact of anatomical uncertainties on the predictions of a musculoskeletal hand model - a sensitivity study}, series = {Computer Methods in Biomechanics and Biomedical Engineering}, volume = {25}, journal = {Computer Methods in Biomechanics and Biomedical Engineering}, number = {2}, publisher = {Taylor \& Francis}, issn = {1476-8259}, doi = {10.1080/10255842.2021.1940974}, pages = {156 -- 164}, abstract = {Outputs of musculoskeletal models should be considered probabilistic rather than deterministic as they are affected by inaccuracies and estimations associated with the development of the model. One of these uncertainties being critical for modeling arises from the determination of the muscles' line of action and the physiological cross-sectional area. Therefore, the aim of this study was to evaluate the outcome sensitivity of model predictions from a musculoskeletal hand model in comparison to the uncertainty of these input parameters. For this purpose, the kinematics and muscle activities of different hand movements (abduction of the fingers, abduction of the thumb, and flexion of the thumb) were recorded. One thousand simulations were calculated for each movement using the Latin hypercube sampling method with a corresponding variation of the muscle origin/insertion points and the cross-sectional area. Comparing the standard hand to simulations incorporating uncertainties of input parameters shows no major deviations in on- and off-set time point of muscle activities. About 60\% of simulations are located within a ± 30\% interval around the standard model concerning joint reaction forces. The comparison with the variation of the input data leads to the conclusion that the standard hand model is able to provide not over-scattered outcomes and, therefore, can be considered relatively stable. These results are of practical importance to the personalization of a musculoskeletal model with subject-specific bone geometries and hence changed muscle line of action.}, subject = {Biomechanik}, language = {en} } @inproceedings{AuerKubowitschKrutschetal., author = {Auer, Simon and Kubowitsch, Simone and Krutsch, Werner and Renkawitz, Tobias and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Effect of mental demand on knee forces in professional youth soccer players}, series = {ISBS Proceedings Archive}, volume = {38}, booktitle = {ISBS Proceedings Archive}, number = {1, Art. 28}, abstract = {Soccer is one of the most popular sports all around the world. It is an injurious type of sport with a focus on lower extremities and high psychological pressure during matches. The stressor is linked with injuries and an increased musculoskeletal loading. This study investigates the influence of cognitive stress on the load profile of the knee joint. Twelve professional youth soccer players performed highly dynamic runs with and without additional cognitive stress. The runs were analysed with a musculoskeletal simulation software. The data analysis shows no difference in knee joint reaction loading under additional mental stress compared to the baseline. Yet running times are significantly lower in the baseline. While there is no increase in the joint loads, the running times indicate an altered movement behaviour when the subjects are exposed to additional mental demand.}, subject = {Kniegelenk}, language = {en} } @article{Dendorfer, author = {Dendorfer, Sebastian}, title = {{\"A}lterwerden muss auch mal wehtun!}, series = {Gesunde Hochschule, OTH Regensburg, 4.7.2016}, journal = {Gesunde Hochschule, OTH Regensburg, 4.7.2016}, language = {de} } @article{ScheerKubowitschDendorferetal., author = {Scheer, Clara and Kubowitsch, Simone and Dendorfer, Sebastian and Jansen, Petra}, title = {Happy Enough to Relax? How Positive and Negative Emotions Activate Different Muscular Regions in the Back - an Explorative Study}, series = {Frontiers in Psychology}, volume = {Volume 12}, journal = {Frontiers in Psychology}, number = {May 2021}, publisher = {Frontiers Media}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.511746}, abstract = {Embodiment theories have proposed a reciprocal relationship between emotional state and bodily reactions. Besides large body postures, recent studies have found emotions to affect rather subtle bodily expressions, such as slumped or upright sitting posture. This study investigated back muscle activity as an indication of an effect of positive and negative emotions on the sitting position. The electromyography (EMG) activity of six back muscles was recorded in 31 healthy subjects during exposure to positive and negative affective pictures. A resting period was used as a control condition. Increased muscle activity patterns in the back were found during the exposure to negative emotional stimuli, which was mainly measured in the lumbar and thorax regions. The positive emotion condition caused no elevated activity. The findings show that negative emotions lead to increased differential muscle activity in the back and thus corroborate those of previous research that emotion affects subtle bodily expressions.}, language = {en} } @article{MelznerEngelhardtSimonetal., author = {Melzner, Maximilian and Engelhardt, Lucas and Simon, Ulrich and Dendorfer, Sebastian}, title = {Electromyography-Based Validation of a Musculoskeletal Hand Model}, series = {Journal of Biomechanical Engineering}, volume = {144}, journal = {Journal of Biomechanical Engineering}, number = {2}, publisher = {American Society of Mechanical Engineers, ASME}, doi = {10.1115/1.4052115}, pages = {8}, abstract = {Regarding the prevention of injuries and rehabilitation of the human hand, musculoskeletal simulations using an inverse dynamics approach allow for insights of the muscle recruitment and thus acting forces on the hand. Currently, several hand models from various research groups are in use, which are mainly validated by the comparison of numerical and anatomical moment arms. In contrast to this validation and model-building technique by cadaver studies, the aim of this study is to further validate a recently published hand model [1] by analyzing numerically calculated muscle activities in comparison to experimentally measured electromyographical signals of the muscles. Therefore, the electromyographical signals of 10 hand muscles of five test subjects performing seven different hand movements were measured. The kinematics of these tasks were used as input for the hand model, and the numerical muscle activities were computed. To analyze the relationship between simulated and measured activities, the time difference of the muscle on- and off-set points was calculated, which resulted in a mean on- and off-set time difference of 0.58 s between the experimental data and the model. The largest differences were detected for movements that mainly addressed the wrist. One major issue comparing simulated and measured muscle activities of the hand is cross-talk. Nevertheless, the results show that the hand model fits the experiment quite accurately despite some limitations and is a further step toward patient-specific modeling of the upper extremity.}, subject = {Elektromyographie}, language = {en} } @article{AuerKurbowitschSuessetal., author = {Auer, Simon and Kurbowitsch, Simone and S{\"u}ß, Franz and Renkawitz, Tobias and Krutsch, Werner and Dendorfer, Sebastian}, title = {Mental stress reduces performance and changes musculoskeletal loading in football-related movements}, series = {Science and Medicine in Football}, volume = {5}, journal = {Science and Medicine in Football}, number = {4}, publisher = {Taylor \& Francis}, doi = {10.1080/24733938.2020.1860253}, pages = {323 -- 329}, abstract = {Purpose: Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Hence, this study investigated the musculoskeletal response of elite youth football players during highly dynamic movements under stress. The hypothesis is that mental stress reduces performance and changes the muscular forces exerted. Materials \& methods: Twelve elite youth football players were subjected to mental stress while performing sports-specific change-of-direction movements. A modified version of the d2 attention test was used as stressor. The kinetics are computed using inverse dynamics. Running times and exerted forces of injury-prone muscles were analysed. Results: The stressor runs were rated more mentally demanding by the players (p = 0.006, rs = 0.37) with unchanged physical demand (p = 0.777, rs = 0.45). This resulted in 10\% longer running times under stress (p < 0.001, d = -1.62). The musculoskeletal analysis revealed higher peak muscle forces under mental stress for some players but not for others. Discussion: The study shows that motion capture combined with musculoskeletal computation is suitable to analyse the effects of stress on athletes in highly dynamic movements. For the first time in football medicine, our data quantifies an association between mental stress with reduced football players' performance and changes in muscle force.}, language = {en} } @article{EngelhardtMelznerHavelkovaetal., author = {Engelhardt, Lucas and Melzner, Maximilian and Havelkova, Linda and Fiala, Pavel and Christen, Patrik and Dendorfer, Sebastian and Simon, Ulrich}, title = {A new musculoskeletal AnyBodyTM detailed hand model}, series = {Computer Methods in Biomechanics and Biomedical Engineering}, volume = {24}, journal = {Computer Methods in Biomechanics and Biomedical Engineering}, number = {7}, publisher = {Taylor \& Francis}, doi = {10.1080/10255842.2020.1851367}, pages = {777 -- 787}, abstract = {Musculoskeletal research questions regarding the prevention or rehabilitation of the hand can be addressed using inverse dynamics simulations when experiments are not possible. To date, no complete human hand model implemented in a holistic human body model has been fully developed. The aim of this work was to develop, implement, and validate a fully detailed hand model using the AnyBody Modelling System (AMS) (AnyBody, Aalborg, Denmark). To achieve this, a consistent multiple cadaver dataset, including all extrinsic and intrinsic muscles, served as a basis. Various obstacle methods were implemented to obtain with the correct alignment of the muscle paths together with the full range of motion of the fingers. These included tori, cylinders, and spherical ellipsoids. The origin points of the lumbrical muscles within the tendon of the flexor digitorum profundus added a unique feature to the model. Furthermore, the possibility of an entire patient-specific scaling based on the hand length and width were implemented in the model. For model validation, experimental datasets from the literature were used, which included the comparison of numerically calculated moment arms of the wrist, thumb, and index finger muscles. In general, the results displayed good comparability of the model and experimental data. However, the extrinsic muscles showed higher accordance than the intrinsic ones. Nevertheless, the results showed, that the proposed developed inverse dynamics hand model offers opportunities in a broad field of applications, where the muscles and joint forces of the forearm play a crucial role.}, language = {en} } @article{SaffertMelznerDendorfer, author = {Saffert, Anne-Sophie and Melzner, Maximilian and Dendorfer, Sebastian}, title = {Biomechanical analysis of the right elevated glenohumeral joint in violinists during legato-playing}, series = {Technology and Health Care}, volume = {30}, journal = {Technology and Health Care}, number = {1}, publisher = {IOS Press}, doi = {10.3233/THC-219001}, pages = {177 -- 186}, abstract = {BACKGROUND: Many statistics reveal that violin players suffer most often from musculoskeletal disorders compared to musicians of other instrument groups. A common phenomenon, especially observed in violin beginners, is the tendency to elevate the right shoulder during playing the violin. This can probably lead to serious disorders in long-term practice with repetitive movements. OBJECTIVE: For this reason, this study investigated the relationship between the right shoulder elevation and the force in the right glenohumeral joint during violin playing. It was hypothesized that the forces in the right glenohumeral joint are higher during playing with the right shoulder raised compared to playing in normal posture. METHODS: Motion capture data from four experienced violinists was recorded and processed by means of musculoskeletal simulation to get the force and elevation angle while playing with raised shoulder and in normal position. RESULTS: The results indicate that the absolute values of the resulting force, as well as the forces in the mediolateral, inferosuperior, and anteroposterior directions, are higher in playing the violin with the shoulder raised than in a normal posture. CONCLUSIONS: Elevating the right shoulder while playing the violin may pose a potential problem.}, subject = {Biomechanische Analyse}, language = {en} } @article{AuerSuessDendorfer, author = {Auer, Simon and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Using markerless motion capture and musculoskeletal models: An evaluation of joint kinematics}, series = {Technology and Health Care}, journal = {Technology and Health Care}, publisher = {IOS Press}, issn = {0928-7329}, doi = {10.3233/THC-240202}, pages = {1 -- 10}, abstract = {BACKGROUND: This study presents a comprehensive comparison between a marker-based motion capture system (MMC) and a video-based motion capture system (VMC) in the context of kinematic analysis using musculoskeletal models. OBJECTIVE: Focusing on joint angles, the study aimed to evaluate the accuracy of VMC as a viable alternative for biomechanical research. METHODS: Eighteen healthy subjects performed isolated movements with 17 joint degrees of freedom, and their kinematic data were collected using both an MMC and a VMC setup. The kinematic data were entered into the AnyBody Modelling System, which enables the calculation of joint angles. The mean absolute error (MAE) was calculated to quantify the deviations between the two systems. RESULTS: The results showed good agreement between VMC and MMC at several joint angles. In particular, the shoulder, hip and knee joints showed small deviations in kinematics with MAE values of 4.8∘, 6.8∘ and 3.5∘, respectively. However, the study revealed problems in tracking hand and elbow movements, resulting in higher MAE values of 13.7∘ and 27.7∘. Deviations were also higher for head and thoracic movements. CONCLUSION: Overall, VMC showed promising results for lower body and shoulder kinematics. However, the tracking of the wrist and pelvis still needs to be refined. The research results provide a basis for further investigations that promote the fusion of VMC and musculoskeletal models.}, language = {en} } @inproceedings{BirkenmaierKrenkel, author = {Birkenmaier, Clemens and Krenkel, Lars}, title = {Convolutional Neural Networks for Approximation of Internal Non-Newtonian Multiphase Flow Fields}, series = {14th World Congress on Computational Mechanics (WCCM), ECCOMAS Congress 2020: 19-24 July 2020, Paris, France}, booktitle = {14th World Congress on Computational Mechanics (WCCM), ECCOMAS Congress 2020: 19-24 July 2020, Paris, France}, editor = {Chinesta, F. and Abgrall, R. and Allix, O. and Kalistke, M}, publisher = {CIMNE}, doi = {10.23967/wccm-eccomas.2020.107}, abstract = {Neural networks (NNs) as an alternative method for universal approximation of differential equations have proven to be computationally efficient and still sufficiently accurate compared to established methods such as the finite volume method (FVM). Additionally, analysing weights and biases can give insights into the underlying physical laws. FVM and NNs are both based upon spacial discretisation. Since a Cartesian and equidistant grid is a raster graphics, image-to-image regression techniques can be used to predict phase velocity fields as well as particle and pressure distributions from simple mass flow boundary conditions. The impact of convolution layer depth and number of channels of a ConvolutionDeconvolution Regression Network (CDRN), on prediction performance of internal non-Newtownian multiphase flows is investigated. Parametric training data with 2055 sets is computed using FVM. To capture significant non-Newtownian effects of a particle-laden fluid (e.g. blood) flowing through small and non-straight channels, an Euler-Euler multiphase approach is used. The FVM results are normalized and mapped onto an equidistant grid as supervised learning target. The investigated NNs consist of n= {3, 5, 7} corresponding encoding/decoding blocks and different skip connections. Regardless of the convolution depth (i.e. number of blocks), the deepest spacial down-sampling via strided convolution is adjusted to result in a 1 × 1 × f · 2nfeature map, with f = {8, 16, 32}. The prediction performance expressed is as channel-averaged normalized root mean squared error (NRMSE). With a NRMSE of < 2 · 10-3, the best preforming NN has f = 32 initial feature maps, a kernel size of k = 4, n = 5 blocks and dense skip connections. Average inference time from this NN takes < 7 · 10-3s. Worst accuracy at NRMSE of approx 9 · 10-3is achieved without any skips, at k = 2, f = 16 and n = 3, but deployment takes only < 2 · 10-3s Given an adequate training, the prediction accuracy improves with convolution depth, where more features have higher impact on deeper NNs. Due to skip connections and batch normalisation, training is similarly efficient, regardless of the depth. This is further improved by blocks with dense connections, but at the price of a drastically larger model. Depending on geometrical complexity, spacial resolution is critical, as it increases the number of learnables and memory requirements massively.}, language = {en} } @article{PhilippdeSomerFoltanetal., author = {Philipp, Alois and de Somer, Filip and Foltan, Maik and Bredthauer, Andre and Krenkel, Lars and Zeman, Florian and Lehle, Karla}, title = {Life span of different extracorporeal membrane systems for severe respiratory failure in the clinical practice}, series = {PLOS ONE}, volume = {13}, journal = {PLOS ONE}, number = {6}, publisher = {PLOS}, doi = {10.1371/journal.pone.0198392}, pages = {1 -- 10}, abstract = {Over the past decade, veno-venous extracorporeal membrane oxygenation (vvECMO) has been increasingly utilized in respiratory failure in patients. This study presents our institution´s experience focusing on the life span of ECMO systems reflecting the performance of a particular system. A retrospective review of our ECMO database identified 461 adult patients undergoing vvECMO (2010-2017). Patients that required more than one system and survived the first exchange >24 hours (n = 139) were included. Life span until the first exchange and exchange criteria were analyzed for all systems (PLS, Cardiohelp HLS-set, both Maquet Cardiopulmonary, Rastatt, Germany; Deltastream/Hilite7000LT, iLA-activve, Xenios/NovaLung, Heilbronn, Germany; ECC.O5, LivaNova, Mirandola, Italy). At our ECMO center, the frequency of a system exchange was 30\%. The median (IQR) life span was 9 (6-12) days. There was no difference regarding the different systems (p = 0.145 and p = 0.108, respectively). However, the Deltastream systems were exchanged more frequently due to elective technical complications (e. g. worsened gas transfer, development of coagulation disorder, increased bleedings complications) compared to the other exchanged systems (p = 0.013). In summary, the used ECMO systems are safe and effective for acute respiratory failure. There is no evidence for the usage of a specific system. Only the increased predictability of an imminent exchange preferred the usage of a Deltastream system. However, the decision to use a particular system should not depend solely on the possible criteria for an exchange.}, language = {en} } @techreport{SteigerFoltanPhilippetal., type = {Working Paper}, author = {Steiger, Tamara and Foltan, Maik and Philipp, Alois and M{\"u}ller, Thomas and Gruber, Michael and Bredthauer, Andre and Krenkel, Lars and Birkenmaier, Clemens and Lehle, Karla}, title = {Accumulations of von Willebrand factor within ECMO oxygenators: Potential indicator of coagulation abnormalities in critically ill patients?}, abstract = {Clot formation within membrane oxygenators (MOs) remains a critical problem during extracorporeal membrane oxygenation (ECMO). The composition of the clots—in particular, the presence of von Willebrand factor (vWF)—may be an indicator for prevalent nonphysiological flow conditions, foreign body reactions, or coagulation abnormalities in critically ill patients. Mats of interwoven gas exchange fibers from randomly collected MOs (PLS, Maquet, Rastatt, Germany) of 21 patients were stained with antibodies (anti-vWF and anti-P-selectin) and counterstained with 4′,6-diamidino-2-phenylindole. The extent of vWF-loading was correlated with patient and technical data. While 12 MOs showed low vWF-loadings, 9 MOs showed high vWF-loading with highest accumulations close to crossing points of adjacent gas fibers. The presence and the extent of vWF-fibers/"cobwebs," leukocytes, platelet-leukocyte aggregates (PLAs), and P-selectin-positive platelet aggregates were independent of the extent of vWF-loading. However, the highly loaded MOs were obtained from patients with a significantly elevated SOFA score, severe thrombocytopenia, and persistent liver dysfunction. The coagulation abnormalities of these critically ill patients may cause an accumulation of the highly thrombogenic and elongated high-molecular-weight vWF multimers in the plasma which will be trapped in the MOs during the ECMO therapy.}, language = {en} } @inproceedings{StelzerTauwaldVielsmeieretal., author = {Stelzer, Vera and Tauwald, Sandra Melina and Vielsmeier, Veronika and Cieplik, Fabian and Kandulski, Arne and Schneider-Brachert, Wulf and W{\"u}nsch, Olaf and R{\"u}tten, Markus and Krenkel, Lars}, title = {Generation and Distribution of Surgical Smoke During High Frequency Electrocauterization}, series = {New Results in Numerical and Experimental Fluid Mechanics XIV. STAB/DGLR Symposium 2022}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics XIV. STAB/DGLR Symposium 2022}, editor = {Dillman, Andreas and Heller, Gerd and Kraemer, Ewald and Wagner, Claus and Weiss, Julien}, publisher = {Springer Nature Switzerland AG}, address = {Cham, Switzerland}, isbn = {978-3-031-40481-8}, doi = {10.1007/978-3-031-40482-5_53}, pages = {559 -- 568}, abstract = {Surgical Smoke is generated during the cauterization of tissue with high-frequency (HF) devices and consists of 95\% water vapor and 5\% cellular debris. When the coagulation tweezers, which are supplied with HF voltage by the HF device, touch tissue, the electric circuit is closed, and smoke is generated by the heat. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during coagulation of tissue. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. With higher power of the HF device, the particles generated are larger in size and the total number of particles generated is also higher. Adding artificial saliva to the tissue shows even higher particle counts. The study by laser light sheet also confirms this. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms considering the risk arising from surgical smoke. Furthermore, the experiments will provide the database for further numerical investigations.}, language = {en} } @inproceedings{RushSchmidRaptis, author = {Rush, Logan and Schmid, Marina and Raptis, Georgios}, title = {Privacy Challenges in Genomic Data: A Scoping Review of Risks, Mitigation Strategies, and Research Gaps.}, series = {Information and Communication Technology: 13th International Symposium, SOICT 2024, Danang, Vietnam, December 13-15, 2024, Proceedings, Part II}, booktitle = {Information and Communication Technology: 13th International Symposium, SOICT 2024, Danang, Vietnam, December 13-15, 2024, Proceedings, Part II}, publisher = {Springer}, address = {Singapore}, doi = {10.1007/978-981-96-4285-4_34}, pages = {416 -- 430}, abstract = {Advances in genomic research have created new privacy challenges. This scoping review analyzes the risks associated with the processing, storage, and sharing of genomic data including epigenetics, and examines current privacy protection strategies. It also attempts to identify research gaps in this area. Using the PRISMA methodology, 37 relevant studies were identified and analyzed. The results of the risk assessment can be grouped into four main themes: Risks posed by processing of functional genomic data, sharing of genomic data, patient (re-)identification, and dividuality, i.e. the extending of privacy risks to blood relatives. The identified risk mitigation strategies were systematically categorized into five classes: pre-release measures, governance, secure data processing and exchange, access restriction and transparency, anonymization and masking. However, there are some important research gaps that still need to be addressed. The current literature neglects to assess the likelihood of potential breaches and tends to focus only on assessing possible scenarios of privacy risks. It also mainly fails to assess the role of contextualized data and the effectiveness of policies and governance systems with respect to privacy risks.}, language = {en} } @article{HornbergerStrieglTrahanofskyetal., author = {Hornberger, Helga and Striegl, Birgit and Trahanofsky, M. and Kneissl, F. and Kronseder, Matthias}, title = {Degradation and bioactivity studies of Mg membranes for dental surgery}, series = {Materials Letter X}, volume = {2}, journal = {Materials Letter X}, number = {June}, publisher = {Elsevier}, doi = {10.1016/j.mlblux.2019.100007}, pages = {1 -- 5}, abstract = {Bioresorbable materials are under investigation due to their promising properties for applications as implant material. This study is about the degradation and bioactivity behaviour of magnesium foils, which allegorize dental membranes. The degradation behaviour including pitting corrosion during immersion tests can be precisely observed using micro-computed tomography. Using the bioactivity test according to Kokubo, it is shown that magnesium has strong Ca-phosphate layer formation correlated with high degradation. Therefore, magnesium foils appear to hold a great potential for bone implant application.}, language = {en} } @misc{TauwaldQuadrioRuettenetal., author = {Tauwald, Sandra Melina and Quadrio, Maurizio and R{\"u}tten, Markus and Stemmer, Christian and Krenkel, Lars}, title = {High Spatial Resolution Tomo-PIV of the Nasopharynx Focussing on the Physiological Breathing Cycle}, series = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, journal = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, address = {G{\"o}ttingen}, organization = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt e.V. / Arbeitsgemeinschaft Str{\"o}mungen mit Abl{\"o}sung, AG STAB}, abstract = {Investigations of complex patient-specific flow in the nasopharynx requires high resolution numerical calculations validated by reliable experiments. When building the validation base and the benchmark of computational fluid dynamics, an experimental setup of the nasal airways was developed. The applied optical measurement technique of tomo-PIV supplies information on the governing flow field in three dimensions. This paper presents tomo-PIV measurements of the highly complex patient-specific geometry of the human trachea. A computertomographic scan of a person's head builds the basis of the experimental silicone model of the nasal airways. An optimised approach for precise refractive index matching avoids optical distortions even in highly complex non-free-of-sight 3D geometries. A linear-motor-driven pump generates breathing scenarios, based on measured breathing cycles. Adjusting of the CCD cameras' double-frame-rate PIV-Δt enables the detailed analysis of flow structures during different cycle phases. Merging regions of interest enables high spatial resolution acquisition of the flow field.}, language = {en} } @misc{StelzerTauwaldVielsmeieretal., author = {Stelzer, Vera and Tauwald, Sandra Melina and Vielsmeier, Veronika and Cieplik, Fabian and Kandulski, Arne and Schneider-Brachert, Wulf and Wuensch, Olaf and R{\"u}tten, Markus and Krenkel, Lars}, title = {Generation, Distribution, and Contagiousness of Surgical Smoke during Tracheotomies}, series = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, journal = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, address = {G{\"o}ttingen}, organization = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt e.V. / Arbeitsgemeinschaft Str{\"o}mungen mit Abl{\"o}sung, AG STAB}, abstract = {Surgical smoke has been a little discussed topic in the context of the current pandemic. Surgical smoke is generated during the cauterization of tissue with heat-generating devices and consists of 95\% water vapor and 5\% cellular debris in the form of particulate matter. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during tissue electrocautery. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. The higher the power of the high-frequency-device the larger the particles in size and the higher the resulting particle counts. The images taken show the densest smoke at 40W with artificial saliva. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms that the risk arising from surgical smoke should be considered. Furthermore, the experiments will provide the database for further numerical investigations.}, language = {en} } @article{StelzerKrenkel, author = {Stelzer, Vera and Krenkel, Lars}, title = {2D numerical investigations derived from a 3D dragonfly wing captured with a high-resolution micro-CT}, series = {Technology and health care : official journal of the European Society for Engineering and Medicine}, volume = {30}, journal = {Technology and health care : official journal of the European Society for Engineering and Medicine}, number = {1}, publisher = {IOS Press}, doi = {10.3233/THC-219010}, pages = {283 -- 289}, abstract = {BACKGROUND: Due to their corrugated profile, dragonfly wings have special aerodynamic characteristics during flying and gliding. OBJECTIVE: The aim of this study was to create a realistic 3D model of a dragonfly wing captured with a high-resolution micro-CT. To represent geometry changes in span and chord length and their aerodynamic effects, numerical investigations are carried out at different wing positions. METHODS: The forewing of a Camacinia gigantea was captured using a micro-CT. After the wing was adapted an error-free 3D model resulted. The wing was cut every 5 mm and 2D numerical analyses were conducted in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, USA). RESULTS: The highest lift coefficient, as well as the highest lift-to-drag ratio, resulted at 0 mm and an angle of attack (AOA) of 5∘. At AOAs of 10∘ or 15∘, the flow around the wing stalled and a K{\´a}rm{\´a}n vortex street behind the wing becomes CONCLUSIONS: The velocity is higher on the upper side of the wing compared to the lower side. The pressure acts vice versa. Due to the recirculation zones that are formed in valleys of the corrugation pattern the wing resembles the form of an airfoil.}, language = {en} } @article{SchecklmannSchmausserKlingeretal., author = {Schecklmann, Martin and Schmausser, Maximilian and Klinger, Felix and Kreuzer, Peter M. and Krenkel, Lars and Langguth, Berthold}, title = {Resting motor threshold and magnetic field output of the figure-of-8 and the double-cone coil}, series = {scientific reports}, volume = {10}, journal = {scientific reports}, number = {1}, publisher = {Nature}, doi = {10.1038/s41598-020-58034-2}, abstract = {The use of the double-cone (DC) coil in transcranial magnetic stimulation (TMS) is promoted with the notion that the DC coil enables stimulation of deeper brain areas in contrast to conventional figure-of-8 (Fo8) coils. However, systematic comparisons of these two coil types with respect to the spatial distribution of the magnetic field output and also to the induced activity in superficial and deeper brain areas are limited. Resting motor thresholds of the left and right first dorsal interosseous (FDI) and tibialis anterior (TA) were determined with the DC and the Fo8 coil in 17 healthy subjects. Coils were orientated over the corresponding motor area in an angle of 45 degrees for the hand area with the handle pointing in posterior direction and in medio-lateral direction for the leg area. Physical measurements were done with an automatic gantry table using a Gaussmeter. Resting motor threshold was higher for the leg area in contrast to the hand area and for the Fo8 in contrast to the DC coil. Muscle by coil interaction was also significant providing higher differences between leg and hand area for the Fo8 (about 27\%) in contrast to the DC coil (about 15\%). Magnetic field strength was higher for the DC coil in contrast to the Fo8 coil. The DC coil produces a higher magnetic field with higher depth of penetration than the figure of eight coil.}, language = {en} } @misc{Krenkel, author = {Krenkel, Lars}, title = {Maskenpflicht f{\"u}r Aerosole - wie wir medizinisches Personal in der Pandemie sch{\"u}tzen}, series = {TRIOKON Digital 2021 : Zukunft Ostbayern, 29.09.2021, Weiden, Deutschland}, journal = {TRIOKON Digital 2021 : Zukunft Ostbayern, 29.09.2021, Weiden, Deutschland}, language = {de} } @article{Raptis, author = {Raptis, Georgios}, title = {Technischer Datenschutz in der telemedizinischen Versorgung}, series = {Der Krankenhaus-JUSTITIAR}, volume = {7}, journal = {Der Krankenhaus-JUSTITIAR}, number = {4}, pages = {105 -- 107}, abstract = {Die fortschreitende Digitalisierung des Gesundheitswesens ebnet auch den Weg einer st{\"a}rkeren Verbreitung der telemedizinischen Versorgung in Deutschland. Die Politik erleichtert diesen Weg, z.B. mit dem eHealth-Gesetz oder mit der Lockerung des "Fernbehandlungsverbots" durch den Deutschen {\"A}rztetag. Dabei wird schon aus der Definition (siehe z.B. die unten stehende Definition der AG Telemedizin) klar, dass Telemedizin keine neue medizinische Disziplin begr{\"u}ndet. Bei Telemedizin handelt es sich nur um ein technisches Werkzeug in Kombination mit geeigneten klinischen Prozessen, damit bestehende medizinische Expertise unter Einsatz von Informations- und Kommunikationstechnologien r{\"a}umliche Entfernungen oder einen zeitlichen Versatz {\"u}berbr{\"u}cken kann. Patientinnen und Patienten k{\"o}nnen also behandelt werden, auch wenn sie vom Arzt r{\"a}umlich entfernt sind.}, subject = {Telemedizin}, language = {de} } @article{Raptis, author = {Raptis, Georgios}, title = {Windows 10 und Datenschutz in der Arztpraxis}, series = {Bayerisches {\"A}rzteblatt}, journal = {Bayerisches {\"A}rzteblatt}, number = {7/8}, pages = {364}, subject = {Windows 10}, language = {de} } @misc{StelzerRuettenKrenkel, author = {Stelzer, Vera and R{\"u}tten, Markus and Krenkel, Lars}, title = {Numerical Investigation of a 3D Dragonfly Wing Captured with a High-Resolution Micro-CT}, series = {8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2022, 5-9 June 2022, Oslo, Norway}, journal = {8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2022, 5-9 June 2022, Oslo, Norway}, abstract = {The special wing geometry of dragonflies consisting of veins and a membrane forming a corrugated profile leads to special aerodynamic characteristics. To capture the governing flow regimes of a dragonfly wing in detail, a realistic wing model has to be investigated. Therefore, this study aimed to analyze the aerodynamic characteristics of a 3D dragonfly wing reconstructed from a high-resolution micro-CT scan. Afterwards, a spatially high discretized mesh was generated using the mesh generator CENTAUR™ 14.5.0.2 (CentaurSoft, Austin, TX, US) to finally conduct Computational Fluid Dynamics (CFD) investigations in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, US). Due to the small dimensions of the wing membrane, only the vein structure of a Camacinia Gigantea was captured at a micro-CT voxel size of 7 microns. The membrane was adapted and connected to the vein structure using a Boolean union operation. Occurring nconsistencies after combining the veins and the membrane were corrected using an adapted pymesh script [1]. As an initial study, only one quarter of the wing (outer wing section) was investigated to reduce the required computational effort. The resulting hybrid mesh consisting of 10 pseudo-structured prism layers along the wing surface and tetrahedra in the farfield area has 43 mio. nodes. The flow around the wing was considered to be incompressible and laminar using transient calculations. When the flow passes the vein structures, steady vortices occur in the corrugation valleys leading to recirculation zones. Therefore, the dragonfly wing resembles the profile of an airfoil. This leads to comparable lift coefficients of dragonfly wings and airfoil profiles at significantly reduced structural weight. The reconstructed geometry also included naturally occurring triangular prismlike serrated structures at the leading edge of the wing, which have comparable effects to micro vortex generators and might stabilize the recirculation zones. Further work aims to investigate the aerodynamic properties of a complete dragonfly wing during wing flapping.}, language = {en} } @misc{BirkenmaierKrenkel, author = {Birkenmaier, Clemens and Krenkel, Lars}, title = {Towards a realistic model of blood viscosity and coagulation in membrane oxygenators}, series = {6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) - ECCM 6; 7th European Conference on Computational Fluid Dynamics - ECFD 7 : Glasgow, Scotland, UK, June 11-15, 2018}, journal = {6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) - ECCM 6; 7th European Conference on Computational Fluid Dynamics - ECFD 7 : Glasgow, Scotland, UK, June 11-15, 2018}, abstract = {Modelling blood flow an shear induced coagulation in membraene oxygenators (MO) is challenging. The relevant geometry of oxygenator fibers (OF) and chaining threads is complex and spans several length scales. In relevant scales and regimes blood shows several significant non-Newtonian effects. Existing models are only capable of accounting for some, but not all relevant effects. Additionally, coagulation processes are influencing fluid properties and geometry significantly. Due to the enormous size of the discretised geometries highly detailed viscosity and coagulation properties of blodd flow in MOs. First step is to find a gemoetry dependent viscosity representation on basis of parametric micro channel experiments with anti-coagulated blood. Next step is a statistic coagulation model, based on micro channel experiments with human (re-calcified citrated) whole blood an evaluation of clinically used osygenators. Since shear rate dependent (i.e. viscosity dependet) coagulation in return influences the viscosity, a combined model with suitable implementation in a RANS framework is necessary. Towards this end, micro channel experiments with new and used single OFs triggering coagulation are performed. Structures of multimeric von Willebrand fibers (vWF), as indicator for shear induced coagulation, are compared to computed and measured flow conditions, using immunofluorescence microscopy, RANS-computations and µPIV, respectively. Preliminary examinations in clinically used MOs show good agreement between occurring structures of vWF, cell depositions and computed flow patterns (geometry form µCT-Scans). However, computed shear rates might be to low to actually trigger activation of vWF. The complex geometry of MOs results in huge meshes, which makes RANS with statistical modelling of viscosity and coagulation a reasonable approach. Towards this end, experimental data on micro channel level with evaluation on real application level is crucial. Especially regarding clotting processes, micro fluidic experiments are powerful research tool.}, language = {en} } @article{TauwaldMichelBrandtetal., author = {Tauwald, Sandra Melina and Michel, Johanna and Brandt, Marie and Vielsmeier, Veronika and Stemmer, Christian and Krenkel, Lars}, title = {Experimental studies and mathematical modeling of the viscoelastic rheology of tracheobronchial mucus from respiratory healthy patients}, series = {Multidisciplinary Respiratory Medicine}, volume = {18}, journal = {Multidisciplinary Respiratory Medicine}, number = {1}, publisher = {PAGEPress}, address = {Pavia, Italy}, issn = {2049-6958}, doi = {10.4081/mrm.2023.923}, pages = {12}, abstract = {BACKGROUND: Tracheobronchial mucus plays a crucial role in pulmonary function by providing protection against inhaled pathogens. Due to its composition of water, mucins, and other biomolecules, it has a complex viscoelastic rheological behavior. This interplay of both viscous and elastic properties has not been fully described yet. In this study, we characterize the rheology of human mucus using oscillatory and transient tests. Based on the transient tests, we describe the material behavior of mucus under stress and strain loading by mathematical models. METHODS: Mucus samples were collected from clinically used endotracheal tubes. For rheological characterization, oscillatory amplitude-sweep and frequency-sweep tests, and transient creep-recovery and stress-relaxation tests were performed. The results of the transient test were approximated using the Burgers model, the Weibull distribution, and the six-element Maxwell model. The three-dimensional microstructure of the tracheobronchial mucus was visualized using scanning electron microscope imaging. RESULTS: Amplitude-sweep tests showed storage moduli ranging from 0.1 Pa to 10000 Pa and a median critical strain of 4 \%. In frequency-sweep tests, storage and loss moduli increased with frequency, with the median of the storage modulus ranging from 10 Pa to 30 Pa, and the median of the loss modulus from 5 Pa to 14 Pa. The Burgers model approximates the viscoelastic behavior of tracheobronchial mucus during a constant load of stress appropriately (R2 of 0.99), and the Weibull distribution is suitable to predict the recovery of the sample after the removal of this stress (R2 of 0.99). The approximation of the stress-relaxation test data by a six-element Maxwell model shows a larger fit error (R2 of 0.91). CONCLUSIONS: This study provides a detailed description of all process steps of characterizing the rheology of tracheobronchial mucus, including sample collection, microstructure visualization, and rheological investigation. Based on this characterization, we provide mathematical models of the rheological behavior of tracheobronchial mucus. These can now be used to simulate mucus flow in the respiratory system through numerical approaches.}, language = {en} } @inproceedings{BirkenmaierSteigerPhilippetal., author = {Birkenmaier, Clemens and Steiger, Tamara and Philipp, Alois and Lehle, Karla and Krenkel, Lars}, title = {Flow-induced accumulations of von Willebrand factor inside oxygenators during extracorporeal life support therapy}, series = {Proceedings of 12th International Conference BIOMDLORE 2018, June 28-30, 2018, Białystok, Poland}, booktitle = {Proceedings of 12th International Conference BIOMDLORE 2018, June 28-30, 2018, Białystok, Poland}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {978-1-5386-2396-1}, doi = {10.1109/BIOMDLORE.2018.8467205}, pages = {3}, abstract = {BACKGROUND: Shear-induced conformational changes of von Willebrand factor (vWF) may be responsible for coagulation disorder and clot formation inside membrane oxygenators (MOs) during extracorporeal membrane oxygenation (ECMO) therapy. OBJECTIVE: The aim was to identify vWF structures inside clinically used MOs and employ computational fluid dynamics to verify the corresponding flow conditions. METHODS: Samples from gas exchange membranes (GEM) from MOs were analysed for accumulations of vWF and P-selectin-positive platelets using immunofluorescence techniques. Streamlines and shear rates of the flow around GEMs were computed using a laminar steady Reynolds-Averaged-Navier-Stokes approach. RESULTS: Most samples were colonized with equally distributed leukocytes, integrated in thin cobweb-like vWF-structures. Only 25 \% of the samples showed extended accumulations of vWF. Computed streamlines showed considerable cross flow between interconnected neighbouring channels. Stagnation points were non-symmetric and contact faces were washed around closely. The occurring maximum shear rates ranged from 2,500 to 3,000 1/s. CONCLUSIONS: If pronounced vWF structures are present, shape and extent match the flow computations well. Computed shear rates bear a critical degree of uncertainty due to the improper viscosity model. If flow conditions inside the MO were sufficient to affect vWF, a more consistent distribution of vWF across the samples should be present.}, language = {en} } @article{BirkenmaierDorniaLehleetal., author = {Birkenmaier, Clemens and Dornia, Christian and Lehle, Karla and M{\"u}ller, Thomas and Gruber, Michael and Philipp, Alois and Krenkel, Lars}, title = {Analysis of Thrombotic Deposits in Extracorporeal Membrane Oxygenators by High-resolution Microcomputed Tomography: A Feasibility Study}, series = {ASAIO Journal / American Society for Artificial Internal Organs}, volume = {66}, journal = {ASAIO Journal / American Society for Artificial Internal Organs}, number = {8}, publisher = {Lippincott Williams \& Wilkins}, issn = {1538-943X}, doi = {10.1097/MAT.0000000000001089}, pages = {922 -- 928}, abstract = {Coagulative disorders, especially clotting during extracorporeal membrane oxygenation, are frequent complications. Direct visualization and analysis of deposits in membrane oxygenators using computed tomography (CT) may provide an insight into the underlying mechanisms causing thrombotic events. However, the already established multidetector CT1 (MDCT) method shows major limitations. Here, we demonstrate the feasibility of applying industrial micro-CT (μCT) to circumvent these restrictions. Three clinically used membrane oxygenators were investigated applying both MDCT and μCT. The scans were analyzed in terms of clot volume and local clot distribution. As validation, the clot volume was also determined from the fluid volume, which could be filled into the respective used oxygenator compared to a new device. In addition, cross-sectional CT images were compared with crosscut oxygenators. Based on the μCT findings, a morphological measure (sphericity) for assessing clot structures in membrane oxygenators is introduced. Furthermore, by comparing MDCT and μCT results, an augmentation of the MDCT method is proposed, which allows for improved clot volume determination in a clinical setting.}, language = {en} } @inproceedings{BirkenmaierKrenkel, author = {Birkenmaier, Clemens and Krenkel, Lars}, title = {Convolutional Neural Networks for Approximation of Blood Flow in Artificial Lungs}, series = {New Results in Numerical and Experimental Fluid Mechanics XIII: Contributions to the 22nd STAB/DGLR Symposium}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics XIII: Contributions to the 22nd STAB/DGLR Symposium}, number = {1. Auflage}, editor = {Dillmann, Andreas and Heller, Gerd and Kr{\"a}mer, Ewald and Wagner, Claus}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-030-79560-3}, doi = {10.1007/978-3-030-79561-0_43}, pages = {451 -- 460}, abstract = {Blood flow in channels of varying diameters <500μm exhibits strong non-linear effects. Multiphase finite volume approaches are feasible, but still computationally costly. Here, the feasibility of applying convolutional neural networks for blood flow prediction in artificial lungs is investigated. Training targets are precomputed using an Eulerian two-phase approach. To match with experimental data, the interphase drag and lift, as well as intraphase shear-thinning are adapted. A recursively branching regression network and convolution/deconvolution networks with plain skip connections and densely connected skips are investigated. A priori knowledge is incorporated in the loss functional to prevent the network from learning non-physical solutions. Inference from neural networks is approximately six orders of magnitude faster than the classical finite volume approach. Even if resulting in comparably coarse flow fields, the neural network predictions can be used as close to convergence initial solutions greatly accelerating classical flow computations.}, language = {en} } @inproceedings{TauwaldQuadrioRuettenetal., author = {Tauwald, Sandra Melina and Quadrio, Maurizio and R{\"u}tten, Markus and Stemmer, Christian and Krenkel, Lars}, title = {High Spatial Resolution Tomo-PIV of the Trachea Focussing on the Physiological Breathing Cycle}, series = {New Results in Numerical and Experimental Fluid Mechanics XIV - Contributions to the 23nd STAB/DGLR Symposium}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics XIV - Contributions to the 23nd STAB/DGLR Symposium}, publisher = {Springer}, abstract = {Investigations of complex patient-specific flow in the nasopharynx requires high resolution numerical calculations validated by reliable experiments. When building the validation base and the benchmark of computational fluid dynamics, an experimental setup of the nasal airways was developed. The applied optical measurement technique of tomo-PIV supplies information on the governing flow field in three dimensions. This paper presents tomo-PIV measurements of the highly complex patient-specific geometry of the human trachea. A computertomographic scan of a person's head builds the basis of the experimental silicone model of the nasal airways. An optimised approach for precise refractive index matching avoids optical distortions even in highly complex non-free-of-sight 3D geometries. A linear-motor-driven pump generates breathing scenarios, based on measured breathing cycles. Adjusting of the CCD cameras' double-frame-rate PIV-Δt enables the detailed analysis of flow structures during different cycle phases. Merging regions of interest enables high spatial resolution acquisition of the flow field.}, language = {en} } @misc{BirkenmaierDorniaLehleetal., author = {Birkenmaier, Clemens and Dornia, Christian and Lehle, Karla and Krenkel, Lars}, title = {Feasibility of detecting thrombotic deposits in membrane oxygenators using micro computed tomography}, series = {25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria}, journal = {25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria}, language = {en} } @inproceedings{TschurtschenthalerKrenkelSchreiner, author = {Tschurtschenthaler, Karl and Krenkel, Lars and Schreiner, Rupert}, title = {Mechano-optical micro pillar sensor for biofluidmechanic wall shear stress measurements}, series = {25th Congress of the European Society of Biomechanics (ESB), July 7-10, 2019, Vienna, Austria}, booktitle = {25th Congress of the European Society of Biomechanics (ESB), July 7-10, 2019, Vienna, Austria}, language = {en} } @misc{TauwaldKrenkel, author = {Tauwald, Sandra Melina and Krenkel, Lars}, title = {Elementary experimental setup for flow visualization in upper human respiratory tract}, series = {25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria}, journal = {25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria}, language = {en} } @misc{WagnerKrenkelDoenitzetal., author = {Wagner, Thomas and Krenkel, Lars and D{\"o}nitz, Christian and Brawanski, Alexander}, title = {Influence of CFD Strategy on WSS and OSI Determination for Intracranial Aneurysm Rupture Assessment}, series = {25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria}, journal = {25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria}, language = {en} } @misc{Krenkel, author = {Krenkel, Lars}, title = {Relevanz von Aerosolen im klinischen Kontext}, series = {Innovationstag Hygiene 2021, Continental Arena, Regensburg, Deutschland}, journal = {Innovationstag Hygiene 2021, Continental Arena, Regensburg, Deutschland}, language = {de} } @incollection{Raptis, author = {Raptis, Georgios}, title = {Privacy and Data Protection: Mission Impossible?}, series = {Consumer Health Informatics}, booktitle = {Consumer Health Informatics}, editor = {Wetter, Thomas}, publisher = {Springer International Publishing}, isbn = {978-3-319-19589-6}, doi = {10.1007/978-3-319-19590-2}, pages = {273 -- 280}, abstract = {Medical confidentiality is very important because it builds the fundament of trust between doctors and patients. In modern health services data protection is essential. But there are also other important security objectives, such as integrity and authenticity of medical data and health services, as their breach can potentially lead to life threatening conditions. State of the art security mechanisms are necessary to protect medical data and services and prevent attacks known as "hacking". They should include in particular cryptography, as you can usually rely on mathematics, more than in software security and access control mechanisms. As patients normally cannot assess the security of a service, security audits or certifications of health services should be provided to generate trust and confidence.}, subject = {Gesundheitswesen}, language = {en} } @incollection{Raptis, author = {Raptis, Georgios}, title = {Gew{\"a}hrleistung der IT-Sicherheit bei vernetzten Implantaten}, series = {Biomedizinische Technik: Vernetzte und intelligente Implantate}, booktitle = {Biomedizinische Technik: Vernetzte und intelligente Implantate}, editor = {Marschner, Uwe and Clasbrummel, Bernhard and Dehm, Johannes}, publisher = {Walter de Gruyter}, isbn = {978-3-11-034927-6}, pages = {182 -- 192}, subject = {Implantat}, language = {de} } @article{EigenbergerFelthausSchratzenstalleretal., author = {Eigenberger, Andreas and Felthaus, Oliver and Schratzenstaller, Thomas and Haerteis, Silke and Utpatel, Kirsten and Prantl, Lukas}, title = {The Effects of Shear Force-Based Processing of Lipoaspirates on White Adipose Tissue and the Differentiation Potential of Adipose Derived Stem Cells}, series = {cells}, volume = {11}, journal = {cells}, number = {16}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/cells11162543}, pages = {13}, abstract = {Autologous lipotransfer is a promising method for tissue regeneration, because white adipose tissue contains a heterogeneous cell population, including mesenchymal stem cells, endothelial cells, immune cells, and adipocytes. In order to improve the outcome, adipose tissue can be processed before application. In this study, we investigated changes caused by mechanical processing. Lipoaspirates were processed using sedimentation, first-time centrifugation, shear-force homogenization, and second-time centrifugation. The average adipocyte size, stromal vascular cell count, and adipocyte depot size were examined histologically at every processing step. In addition, the adipose derived stem cells (ADSCs) were isolated and differentiated osteogenically and adipogenically. While homogenization causes a disruption of adipocyte depots, the shape of the remaining adipocytes is not changed. On average, these adipocytes are smaller than the depot adipocytes, they are surrounded by the ECM, and therefore mechanically more stable. The volume loss of adipocyte depots leads to a significant enrichment of stromal vascular cells such as ADSCs. However, the mechanical processing does not change the potential of the ADSCs to differentiate adipogenically or steogenically. It thus appears that mechanically processed lipoaspirates are promising for the reparation of even mechanically stressed tissue as that found in nasolabial folds. The changes resulting from the processing correspond more to a filtration of mechanically less stable components than to a manipulation of the tissue.}, language = {en} } @article{ObermaierLehleSchmidetal., author = {Obermaier, Lisa and Lehle, Karla and Schmid, Stefanie and Schmid, Christof and Schratzenstaller, Thomas}, title = {Introduction of a new ex vivo porcine coronary artery model: Evaluation of the direct vascular injury after stent implantation with and without dogbone effect}, series = {European Surgical Research}, volume = {63}, journal = {European Surgical Research}, number = {4}, publisher = {Karger}, address = {Basel}, issn = {1421-9921}, doi = {10.1159/000527883}, pages = {285 -- 293}, abstract = {Introduction: Neointimal hyperplasia after percutaneous coronary intervention remains a major determinant of in-stent restenosis (ISR). The extent of mechanical vessel injury correlates with ISR. A new ex vivo porcine stent model was introduced and evaluated comparing different stent designs. Methods: Coronary arteries were prepared from pig hearts from the slaughterhouse and used for ex vivo implantations of coronary stents. One basic stent design in two configurations (dogbone, DB; non-dogbone, NDB) was used. Vascular injury was determined according to a modified injury score (IS). Results: Standardized experimental conditions ensured comparable vessel dimensions and overstretch data. DB stents caused more severe IS compared to NDB stents. The mean IS and the IS at the distal end of all stents were significantly reduced for NDB stents (ISMean, DB, 1.16 ±0.12; NDB, 1.02 ±0.12; p=0.018; ISDist, DB, 1.39 ±0.28; NDB, 1.13 ±0.24; p=0.03). Discussion/Conclusion: The introduced ex-vivo model allowed the evaluation of different stent designs exclude unfavorable stent designs.}, language = {en} } @article{GeithNothdurfterHeimletal., author = {Geith, Markus A. and Nothdurfter, Laurenz and Heiml, Manuel and Agrafiotis, Emmanouil and Gruber, Markus and Sommer, Gerhard and Schratzenstaller, Thomas and Holzapfel, Gerhard A.}, title = {Quantifying stent-induced damage in coronary arteries by investigating mechanical and structural alterations}, series = {Acta Biomaterialia}, volume = {116}, journal = {Acta Biomaterialia}, number = {October}, publisher = {Elsevier}, doi = {10.1016/j.actbio.2020.08.016}, pages = {285 -- 301}, abstract = {Vascular damage develops with diverging severity during and after percutaneous coronary intervention with stent placement and is the prevailing stimulus for in-stent restenosis. Previous work has failed to link mechanical data obtained in a realistic in vivo or in vitro environment with data collected during imaging processes. We investigated whether specimens of porcine right coronary arteries soften when indented with a stent strut shaped structure, and if the softening results from damage mechanisms inside the fibrillar collagen structure. To simulate the multiaxial loading scenario of a stented coronary artery, we developed the testing device 'LAESIO' that can measure differences in the stress-stretch behavior of the arterial wall before and after the indentation of a strut-like stamp. The testing protocol was optimized according to preliminary experiments, more specifically equilibrium and relaxation tests. After chemical fixation of the specimens and subsequent tissue clearing, we performed three-dimensional surface and second-harmonic generation scans on the deformed specimens. We analyzed and correlated the mechanical response with structural parameters of high-affected tissue located next to the stamp indentation and low-affected tissue beyond the injured area. The results reveal that damage mechanisms, like tissue compression as well as softening, fiber dispersion, and the lesion extent, are direction-dependent, and the severity of them is linked to the strut orientation, indentation pressure, and position. The findings highlight the need for further investigations by applying the proposed methods to human coronary arteries. Additional data and insights might help to incorporate the observed damage mechanisms into material models for finite element analyses to perform more accurate simulations of stent-implantations.}, language = {en} } @inproceedings{WiesentGeithWagner, author = {Wiesent, Lisa and Geith, Markus A. and Wagner, Marcus}, title = {Simulation of Fluid-Structure Interaction between injection medium and balloon catheter using ICFD}, series = {11th European LS-DYNA Conference 2017, 9 - 11 May, Salzburg, Austria}, booktitle = {11th European LS-DYNA Conference 2017, 9 - 11 May, Salzburg, Austria}, isbn = {978-3981621549}, abstract = {Arteriosclerosis is a major health issue worldwide. While it is commonly treated by the implantation of an balloon-expandable stent, micro injuries may occur during stent deployment, and induce in-stent restenosis, whose consequence can be fatal. Studying this undesirable phenomenon is usually limited as experimental data is hard to obtain on ethical ground. Numerical simulation are performed to better understand this problem. To construct a more realistic simulation of a balloon-expandable stent, a partitioned strongly-coupled FSI simulation of the balloon deployment was set up using the ICFD solver of LS-DYNA, - a quite innovative approach. The complex balloon configuration as well as the interaction of the injection medium and the balloon structure was considered. The balloon structure consisting of shell elements was obtained from preliminary balloon folding and pleating simulations. The balloon consists of a flexible thin walled polyamide. The injection fluid is implemented using volume elements. Balloon deployment was initiated by a pressure boundary condition inducing a volume flow into the balloon. The initial feasibility analysis showed promising result including a continuous balloon deployment and a reasonable development of the fluid pressure and velocity field. However, applying this FSI approach to a more complex balloon structure led to a non convergent solution. The non-convergence could be mainly reduced to mechanical factors including the low wall thickness of the balloon (< 0.05 mm) and the flexibility of the polyamide. Further, the ICFD solver shows less accuracy concerning the FSI conditions when dealing with thin flexible structures as well as enclosed volumes. A shell thickness of 0.06 mm is believed to result in a convergent solution.}, subject = {Koronare Herzkrankheit}, language = {en} } @article{WiesentSchultheissSchmidetal., author = {Wiesent, Lisa and Schultheiss, Ulrich and Schmid, Christof and Schratzenstaller, Thomas and Nonn, Aida}, title = {Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning}, series = {PlOS One}, volume = {14}, journal = {PlOS One}, number = {10}, publisher = {PLOS}, doi = {10.1371/journal.pone.0224026}, pages = {1 -- 25}, abstract = {In-stent restenosis remains a major problem of arteriosclerosis treatment by stenting. Expansion-optimized stents could reduce this problem. With numerical simulations, stent designs/ expansion behaviours can be effectively analyzed. For reasons of efficiency, simplified models of balloon-expandable stents are often used, but their accuracy must be challenged due to insufficient experimental validation. In this work, a realistic stent life-cycle simulation has been performed including balloon folding, stent crimping and free expansion of the balloon-stent-system. The successful simulation and validation of two stent designs with homogenous and heterogeneous stent stiffness and an asymmetrically positioned stent on the balloon catheter confirm the universal applicability of the simulation approach. Dogboning ratio, as well as the final dimensions of the folded balloon, the crimped and expanded stent, correspond well to the experimental dimensions with only slight deviations. In contrast to the detailed stent life-cycle simulation, a displacement-controlled simulation can not predict the transient stent expansion, but is suitable to reproduce the final expanded stent shape and the associated stress states. The detailed stent life-cycle simulation is thus essential for stent expansion analysis/optimization, whereas for reasons of computational efficiency, the displacement-controlled approach can be considered in the context of pure stress analysis.}, subject = {Stent}, language = {en} } @article{GeithSwidergalHochholdingeretal., author = {Geith, Markus A. and Swidergal, Krzysztof and Hochholdinger, Bernd and Schratzenstaller, Thomas and Wagner, Marcus and Holzapfel, Gerhard A.}, title = {On the importance of modeling balloon folding, pleating, and stent crimping: An FE study comparing experimental inflation tests}, series = {International Journal for Numerical Methods in Biomedical Engineering}, volume = {35}, journal = {International Journal for Numerical Methods in Biomedical Engineering}, number = {11}, publisher = {Wiley}, doi = {10.1002/cnm.3249}, abstract = {Finite element (FE)-based studies of preoperative processes such as folding,pleating, and stent crimping with a comparison with experimental inflation tests are not yet available. Therefore, a novel workflow is presented in which residual stresses of balloon folding and pleating, as well as stent crimping, and the geometries of all contact partners were ultimately implemented in an FE code to simulate stent expansion by using an implicit solver. The numerical results demonstrate that the incorporation of residual stresses and strains experienced during the production step significantly increased the accuracy of the subsequent simulations, especially of the stent expansion model. During the preoperative processes, stresses inside the membrane and the stent material also reached a rather high level. Hence, there can be no presumption that balloon catheters or stents are undamaged before the actual surgery. The implementation of the realistic geometry, in particular the balloon tapers, and the blades of the process devices improved the simulation of the expansion mech-anisms, such as dogboning, concave bending, or overexpansion of stent cells. This study shows that implicit solvers are able to precisely simulate the mentioned preoperative processes and the stent expansion procedure without a preceding manipulation of the simulation time or physical mass.}, subject = {Stent}, language = {en} } @misc{WiesentHupkeBalketal., author = {Wiesent, Lisa and Hupke, Constantin and Balk, Christian and Schultheiss, Ulrich and Schratzenstaller, Thomas}, title = {Optimization of the cardiovascular stent design towards improved expansion behaviour and radial stiffness properties}, series = {Biomedizinische Technik}, volume = {63}, journal = {Biomedizinische Technik}, number = {s1}, doi = {10.1515/bmt-2018-6031}, abstract = {- Development of a FEA Tool for a realistic stent simulation - investigation on minor modification on the stent design on the expansion behaviour - analysis of three stent designs: classical stent design with pronounced dogbone effect, two modified stent design (non-dogbone-design)}, subject = {Kardiovaskul{\"a}res System}, language = {en} } @misc{GeithSwidergalSchratzenstalleretal., author = {Geith, Markus A. and Swidergal, Krzysztof and Schratzenstaller, Thomas and Holzapfel, Gerhard A. and Wagner, Marcus}, title = {Numerical analysis of stent delivery systems during pre- and intraoperative processes}, series = {15. Deutsches LS-DYNA Forum, 15.-17.10.2018, Bamberg}, journal = {15. Deutsches LS-DYNA Forum, 15.-17.10.2018, Bamberg}, language = {en} } @article{GeithSommerSchratzenstalleretal., author = {Geith, Markus A. and Sommer, Gerhard and Schratzenstaller, Thomas and Holzapfel, Gerhard A.}, title = {Biomechanical and structural quantification of vascular damage: A unique investigation of stent implantation}, series = {Artery Research}, volume = {20}, journal = {Artery Research}, number = {Issue C}, doi = {10.1016/j.artres.2017.10.025}, pages = {50}, language = {en} } @article{WiesentSchultheissLullaetal., author = {Wiesent, Lisa and Schultheiß, Ulrich and Lulla, Philipp and Noster, Ulf and Schratzenstaller, Thomas and Schmid, Christof and Nonn, Aida and Spear, Ashley}, title = {Computational analysis of the effects of geometric irregularities and post-processing steps on the mechanical behavior of additively manufactured 316L stainless steel stents}, series = {PLoS ONE}, volume = {15}, journal = {PLoS ONE}, number = {12}, publisher = {PLOS}, doi = {10.1371/journal.pone.0244463}, pages = {1 -- 30}, abstract = {Advances in additive manufacturing enable the production of tailored lattice structures and thus, in principle, coronary stents. This study investigates the effects of process-related irregularities, heat and surface treatment on the morphology, mechanical response, and expansion behavior of 316L stainless steel stents produced by laser powder bed fusion and provides a methodological approach for their numerical evaluation. A combined experimental and computational framework is used, based on both actual and computationally reconstructed laser powder bed fused stents. Process-related morphological deviations between the as-designed and actual laser powder bed fused stents were observed, resulting in a diameter increase by a factor of 2-2.6 for the stents without surface treatment and 1.3-2 for the electropolished stent compared to the as-designed stent. Thus, due to the increased geometrically induced stiffness, the laser powder bed fused stents in the as-built (7.11 ± 0.63 N) or the heat treated condition (5.87 ± 0.49 N) showed increased radial forces when compressed between two plates. After electropolishing, the heat treated stents exhibited radial forces (2.38 ± 0.23 N) comparable to conventional metallic stents. The laser powder bed fused stents were further affected by the size effect, resulting in a reduced yield strength by 41\% in the as-built and by 59\% in the heat treated condition compared to the bulk material obtained from tensile tests. The presented numerical approach was successful in predicting the macroscopic mechanical response of the stents under compression. During deformation, increased stiffness and local stress concentration were observed within the laser powder bed fused stents. Subsequent numerical expansion analysis of the derived stent models within a previously verified numerical model of stent expansion showed that electropolished and heat treated laser powder bed fused stents can exhibit comparable expansion behavior to conventional stents. The findings from this work motivate future experimental/numerical studies to quantify threshold values of critical geometric irregularities, which could be used to establish design guidelines for laser powder bed fused stents/lattice structures.}, subject = {Koronarendoprothese}, language = {en} } @article{WesselyHausleiterMichaelisetal., author = {Wessely, Rainer and Hausleiter, J{\"o}rg and Michaelis, Cornelia and Jaschke, Birgit and Vogeser, Michael and Milz, Stefan and Behnisch, Boris and Schratzenstaller, Thomas and Renke-Gluszko, Magdalena and St{\"o}ver, Michael and Wintermantel, Erich and Kastrati, Adnan and Sch{\"o}mig, Albert}, title = {Inhibition of neointima formation by a novel drug-eluting stent system that allows for dose-adjustable, multiple, and on-site stent coating}, series = {Arteriosclerosis, Thrombosis, and Vascular Biology}, volume = {25}, journal = {Arteriosclerosis, Thrombosis, and Vascular Biology}, number = {4}, issn = {1524-4636}, doi = {10.1161/01.ATV.0000157579.52566.ee}, pages = {748 -- 753}, abstract = {Objective The risk of in-stent restenosis can be considerably reduced by stents eluting cytostatic compounds. We created a novel drug-eluting stent system that includes several new features in the rapidly evolving field of stent-based drug delivery. Methods and Results The aim of the present study was the preclinical evaluation of a stent-coating system permitting individual, on-site coating of stents with a unique microporous surface allowing for individualizable, dose-adjustable, and multiple coatings with identical or various compounds, designated ISAR (individualizable drug-eluting stent system to abrogate restenosis). Stents were coated with 0.75\% rapamycin solution, and high-performance liquid chromatography (HPLC)-based determination of drug release profile indicated drug release for >21 days. Rapamycin-eluting microporous (REMP) stents implanted in porcine coronary arteries were safe. To determine the efficacy of REMP stents, this novel drug-eluting stent platform was compared with the standard sirolimus-eluting stent. At 30 days, in-stent neointima formation in porcine coronary arteries was similar in both groups, yielding a significant decrease of neointimal area and injury-dependent neointimal thickness compared with bare-metal stents. Conclusion The ISAR drug-eluting stent platform as a novel concept for stent coating allows for a safe, effective, on-site stent coating process, thus justifying further clinical evaluation to decrease in-stent restenosis in humans. In-stent neointima formation can be successfully attenuated by drug-eluting stents. We introduce a novel conceptual approach for stent-coating that allows for dose-adjustable, on-site stent coating process if desired with multiple compounds. Microporous stents coated with rapamycin proved safe and effective for the limitation of neointima formation in a porcine coronary stent model.}, language = {en} } @article{HausleiterKastratiWesselyetal., author = {Hausleiter, J{\"o}rg and Kastrati, Adnan and Wessely, Rainer and Dibra, Alban and Mehilli, Julinda and Schratzenstaller, Thomas and Graf, Isolde and Renke-Gluszko, Magdalena and Behnisch, Boris and Dirschinger, Josef and Wintermantel, Erich and Sch{\"o}mig, Albert}, title = {Prevention of restenosis by a novel drug-eluting stent system with a dose-adjustable, polymer-free, on-site stent coating}, series = {European Heart Journal - Clinical research}, volume = {26}, journal = {European Heart Journal - Clinical research}, number = {15}, doi = {10.1093/eurheartj/ehi405}, pages = {1475 -- 1481}, abstract = {Aims Drug-eluting stents (DES) represent a major advance in interventional cardiology. Along with the success shown, current DES also present limitations related to the presence of polymer-coating, fixed drug, and dose used. With the ISAR (Individualized Drug-Eluting Stent System to Abrogate Restenosis) project, a DES system has been developed that permits individualized choice of the drug and dose to use for the given patient. The objective of this prospective dose finding study was to assess the feasibility, safety, and efficacy of a polymer-free on-site stent coating with increasing rapamycin doses. Methods and results In this dose finding study, 602 patients were sequentially enrolled in four groups: microporous bare metal stent (BMS), DES stents coated with a 0.5, 1.0, and 2.0\% rapamycin solution. The angiographic in-segment restenosis rate at follow-up angiography was the primary study endpoint. In-segment restenosis was significantly reduced from 25.9\% with BMS to 18.9, 17.2, and 14.7\% with 0.5, 1.0, and 2.0\% rapamycin-eluting stents, respectively (P=0.024). Similarly, the need for target lesion revascularization at 1 year follow-up was reduced from 21.5\% with BMS to 16.4, 12.6, and 8.8\% with 0.5, 1.0, and 2.0\% rapamycin-eluting stents, respectively (P=0.006). Conclusion The placement of polymer-free stents coated on-site with rapamycin is feasible and safe. Furthermore, a dose-dependent efficacy in restenosis prevention is achievable with this new DES concept.}, language = {en} } @article{PrantlEigenbergerKleinetal., author = {Prantl, Lukas and Eigenberger, Andreas and Klein, Silvan and Limm, Katharina and Oefner, Peter J. and Schratzenstaller, Thomas and Felthaus, Oliver}, title = {Shear Force Processing of Lipoaspirates for Stem Cell Enrichment Does Not Affect Secretome of Human Cells Detected by Mass Spectrometry In Vitro}, series = {Plastic and Reconstructive Surgery}, volume = {146}, journal = {Plastic and Reconstructive Surgery}, number = {6}, publisher = {American Society of Plastic Surgeons}, doi = {10.1097/PRS.0000000000007343}, pages = {749e -- 758e}, abstract = {Background: Lipofilling is one of the most often performed surgical procedures in plastic and reconstructive surgery. Lipoaspirates provide a ready source of stem cells and secreted factors that contribute to neoangiogenesis and fat graft survival. However, the regulations about the enrichment of these beneficial cells and factors are ambiguous. In this study, the authors tested whether a combination of centrifugation and homogenization allowed the enrichment of viable stem cells in lipoaspirates through the selective removal of tumescent solution, blood, and released lipids without significantly affecting the cell secretome. Methods: Human lipoaspirate was harvested from six different patients using water jet-assisted liposuction. Lipoaspirate was homogenized by first centrifugation (3584 rpm for 2 minutes), shear strain (10 times intersyringe processing), and second centrifugation (3584 rpm for 2 minutes). Stem cell enrichment was shown by cell counting after stem cell isolation. Lipoaspirate from different processing steps (unprocessed, after first centrifugation, after homogenization, after second centrifugation) was incubated in serum-free cell culture medium for mass spectrometric analysis of secreted proteins. Results: Lipoaspirate homogenization leads to a significant 2.6 ± 1.75-fold enrichment attributable to volume reduction without reducing the viability of the stem cells. Protein composition of the secretome did not change significantly after tissue homogenization. Considering the enrichment effects, there were no significant differences in the protein concentration of the 83 proteins found in all processing steps. Conclusions: Stem cells can be enriched mechanically without significantly affecting the composition of secreted proteins. Shear-assisted enrichment of lipoaspirate constitutes no substantial manipulation of the cells' secretome.}, language = {en} } @article{GeithEckmannHaspingeretal., author = {Geith, Markus A. and Eckmann, Jakob D. and Haspinger, Daniel Ch. and Agrafiotis, Emmanouil and Maier, Dominik and Szabo, Patrick and Sommer, Gerhard and Schratzenstaller, Thomas and Holzapfel, Gerhard A.}, title = {Experimental and mathematical characterization of coronary polyamide-12 balloon catheter membranes}, series = {PLoS One}, volume = {15}, journal = {PLoS One}, number = {6}, publisher = {PLOS}, doi = {10.1371/journal.pone.0234340}, pages = {1 -- 22}, abstract = {The experimental quantification and modeling of the multiaxial mechanical response of polymer membranes of coronary balloon catheters have not yet been carried out. Due to the lack of insights, it is not shown whether isotropic material models can describe the material response of balloon catheter membranes expanded with nominal or higher, supra-nominal pressures. Therefore, for the first time, specimens of commercial polyamide-12 balloon catheters membranes were investigated during uniaxial and biaxial loading scenarios. Furthermore, the influence of kinematic effects on the material response was observed by comparing results from quasi-static and dynamic biaxial extension tests. Novel clamping techniques are described, which allow to test even tiny specimens taken from the balloon membranes. The results of this study reveal the semi-compliant, nonlinear, and viscoelastic character of polyamide-12 balloon catheter membranes. Above nominal pressure, the membranes show a pronounced anisotropic mechanical behavior with a stiffer response in the circumferential direction. The anisotropic feature intensifies with an increasing strain-rate. A modified polynomial model was applied to represent the realistic mechanical response of the balloon catheter membranes during dynamic biaxial extension tests. This study also includes a compact set of constitutive model parameters for the use of the proposed model in future finite element analyses to perform more accurate simulations of expanding balloon catheters.}, language = {en} } @inproceedings{GeithSommerSchratzenstalleretal., author = {Geith, Markus A. and Sommer, Gerhard and Schratzenstaller, Thomas and Holzapfel, Gerhard A.}, title = {First Approaches in Quantifying Acute Vascular Damage due to Stenting}, series = {23rd Congress of the European Society of Biomechanics, July 2-5,2017, Seville, Spain}, booktitle = {23rd Congress of the European Society of Biomechanics, July 2-5,2017, Seville, Spain}, subject = {Stent}, language = {en} } @misc{Singh, author = {Singh, Max Diamond}, title = {Reclassification of Orthopedic Devices per the Medical Device Regulation}, series = {OSMA Winter Educational Program, St. Petersburg/USA, 2019. - [Veranstalter: Orthopedic Surgical Manufacturers Association (OSMA)]}, journal = {OSMA Winter Educational Program, St. Petersburg/USA, 2019. - [Veranstalter: Orthopedic Surgical Manufacturers Association (OSMA)]}, language = {en} } @misc{Dendorfer, author = {Dendorfer, Sebastian}, title = {The influence of modeling parameters in the AnyBody Modeling System on muscle and joint loading in the shoulder}, series = {International Shoulder Group Meeting}, volume = {05}, journal = {International Shoulder Group Meeting}, language = {en} } @inproceedings{GrossVerkerkeDendorfer, author = {Gross, Simon and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {Combined Experimental and Numerical Approach to Investigate Changes in Muscle Recruitment Pattern of the Back Muscles during Exhausting Exercise}, series = {World Congress Biomechanics Dublin, 2018}, booktitle = {World Congress Biomechanics Dublin, 2018}, abstract = {In recent years, musculoskeletal computation has become a widely used tool to investigate joint and muscle forces within the human body. However, the issue of muscle fatigue is not considered adequately in most models and is a challenging task. One aspect that needs to be examined is the interaction of muscles during an exhausting task. Therefore, an experimental study was designed to analyze the changes of back muscle recruitment pattern during such exercises. In this study 38 subjects (27 male, 11 female, height = 177±8.5 cm, weight = 74.0±13.6 kg) participated. Each subject had to perform three static and three dynamic exhausting exercises where the back muscles were loaded with subject specific forces using a dynamometer adapter especially designed for the trunk muscles. To collect the muscle activity, twelve surface electromyography sensors were applied on the back, and four on the abdominal muscles. Muscle activity and fatigue were analyzed by calculating the maximum voluntary contraction normalized signal and the median frequency. At first the fatigue of m. erector spinae and m. multifidi was analyzed, since these muscles carry the main load during the exercises. Subsequently the activity of the m. trapezius, m. rectus abdominis and m. obliquus externus were investigated to determine recruitment patterns. To gain more detailed information of these patterns a numerical model was built using the AnyBody Modeling System™. Analyzing the measurements, we can observe an increasing muscle activity during isokinetic exercises while the force is constant. Since the activity in the simulation is defined as the current force output divided by the strength of the muscle, the strength parameter was scaled down based on the measured data, assuming a linear force - activity correlation, and using a numerical algorithm considering the influence of cross talk. The results show, that changes in recruitment pattern can be divided into three major subgroups. Prior to total exhaustion, some of the subjects show additional activation of muscles in the trapezius region, while other subjects show an additional activation of abdominal muscles, increasing the intra-abdominal pressure which supports the spine. In the third group an activation in both regions can be observed. The numerical simulations show an increasing activity of abdominal muscles as well as muscles in the upper back. Especially the m. latissimus dorsi shows a significantly higher activity. The results lead to the conclusion that prior to total exhaustion, additional muscles are recruited to support the main muscles. It was shown that abdominal muscles are activated to support back muscles by pressurizing the trunk cavity to delay total exhaustion as long as possible. In conclusion, the results show that changes in muscle recruitment pattern need to be considered when introducing muscle fatigue to musculoskeletal models.}, language = {en} }