@article{SalamaKouDawoudetal., author = {Salama, Amgad and Kou, Jisheng and Dawoud, Belal and Rady, Mohamed and El Morshedy, Salah}, title = {Investigation of the self-propulsion of a wetting/nonwetting ganglion in tapered capillaries with arbitrary viscosity and density contrasts}, series = {Colloids and Surfaces A: Physicochemical and Engineering Aspects}, volume = {664}, journal = {Colloids and Surfaces A: Physicochemical and Engineering Aspects}, publisher = {Elsevier}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2023.131151}, abstract = {The movement of a meniscus inside a capillary tube has been extensively studied in the context of displacing one fluid with another immiscible one. This phenomenon exists in many applications including pharmaceutical, oil production, filtration and separation processes, and others. When one of the phases is entrapped inside a capillary tube, it forms what is called a ganglion with two menisci between the two fluids. In a straight uniform capillary tube, a stagnant entrapped ganglion is symmetric. The situation is different if the capillary tube is tapered in which case the two menisci assume different curvatures. Such inhomogeneity of the capillary pressure self-propels the ganglion to move. The fate of the ganglion inside the tapered tube depends on whether it is wetting or nonwetting to the tube wall. That is, after the initial movement, a wetting ganglion accelerates towards the tapered end of the tube while a nonwetting one decelerates towards the wider end before reaching a terminal configuration. Such fates are linked to the variations of the capillary pressure, which continuously increases for a wetting ganglion and decreases for the nonwetting one. In this work, a generalized model is developed that not only describes capillary-driven dynamics over a wide range of viscosity and density contrasts but also pressure-driven scenarios with/without gravity. The model, however, neglects the inertial effect of the two fluids on account of the fact that it is confined to the very early time of the movement process. A first-order nonlinear ordinary differential equation is developed that describes the dynamic behavior of both the wetting and nonwetting ganglions. A fourth-order Runge-Kutta algorithm is developed to solve the model equations. Furthermore, a computational fluid dynamics (CFD) analysis was used to provide a comparison and verification framework.}, language = {en} } @article{SalamaKouDawoudetal., author = {Salama, Amgad and Kou, Jisheng and Dawoud, Belal and Simonson, Carey}, title = {A modeling approach for capillary-driven flow of a wetting fluid in a rectangular open microchannel of arbitrary axisymmetric width profile}, series = {International Journal of Thermal Sciences}, volume = {195}, journal = {International Journal of Thermal Sciences}, publisher = {Elsevier}, issn = {1290-0729}, doi = {10.1016/j.ijthermalsci.2023.108622}, pages = {17}, abstract = {Microchips are intensively used in almost all nowadays electronic devices. With the continuous advancement of our technologies, they get smaller in size than ever before. They generate high-intensity heat loads that need to be transported effectively such that they may function properly. Heat pipes have proven to be very effective in transporting relatively large heat loads from miniature components. They are of seamless structure that involves a working fluid capable of evaporation and condensation at the working temperature of the electronic chips. The working fluid is derived to move from the condenser to the evaporator via multiple microgrooves using capillary forces. It is important that the condensate reaches the evaporator at a proper rate such that no dry-out or flooding occur. In this work, we are particularly interested in the case of capillary-driven flows in rectangular microchannels. A generalized model is developed that works for axe-symmetric rectangular channels of arbitrary, moderately varying width profiles. It also accounts for any contrast of viscosity between the liquid and the vapor under isothermal conditions. The model shows to reduce to the special case of imbibition in straight and uniform microchannels, for which comparisons with experimental and modeling works show an excellent match. Cases representing linearly and quadratically varying converging/diverging width profiles have been explored. It is found that the viscosity ratio has a significant influence on the rate at which the meniscus advances. The model also negates the common practice found in the literature of using the formula developed for imbibition rates in capillary tubes for rectangular microchannels by replacing the diameter of the tube with the hydraulic diameter. It is also found that the channel profile has an influential effect on the imbibition rates. For tapered microchannels, the capillary force increases along the channel length while it decreases for diverging ones. It is interestingly demonstrated that, for quadratically tapered microchannel, the speed of the meniscus increases towards the end of the microchannel compared with linearly varying microchannels. On the other hand, for diverging microchannels, the speed of the meniscus decreases due to the increase in the cross-sectional area. Computational fluid dynamics (CFD) analysis has been conducted to provide a framework for confirmation and verification for which very good match has been established, which builds confidence in the modeling approach.}, language = {en} }