@article{BeckerBoehmChavezetal., author = {Becker, Tatiana I. and B{\"o}hm, Valter and Chavez, Jhohan and Odenbach, Stefan and Raikher, Yuriy L. and Zimmermann, Klaus}, title = {Magnetic-field-controlled mechanical behavior of magneto-sensitive elastomers in applications for actuator and sensor systems}, series = {Archive of Applied Mechanics}, volume = {89}, journal = {Archive of Applied Mechanics}, number = {1}, publisher = {Springer Nature}, doi = {10.1007/s00419-018-1477-4}, pages = {133 -- 152}, abstract = {The development of actuator and sensor systems with complex adaptive behavior and operating sensitivity is one of the actual scientific challenges. Smart materials like magneto-sensitive elastomers (MSEs) offer great potential for designing such intelligent devices, because they possess unique magnetic-field-dependent properties. The present paper deals with investigations of the free and forced vibrational behavior displayed by cantilever beams of MSEs containing magnetically soft particles in a uniform magnetic field. It is shown experimentally as well as theoretically that the first bending eigenfrequency of MSE beams depends strongly on the strength of an applied magnetic field. The proposed magneto-mechanical model is based on the vibrational dynamics of thin rods and predicts reliably the amplitude-frequency characteristics depending on the geometric configuration of the MSE and its material parameters. It is found that the vibration response of an MSE beam under kinematic excitation of its base can be modified indirectly by a magnetic field control due to the change of the vibration characteristics. As a result, the resonance can occur in different ranges of the excitation frequency. The dependencies of the amplification ratio on the excitation frequency are obtained experimentally and compared with the result provided by the theoretical model. Moreover, investigations on the potential use of the field-induced plasticity effect of MSEs in form-fit gripper applications are presented. This effect can be used to realize shape adaptable system parts. It is found that the mechanical properties of each component and its concentration within the mixture have an impact on the mechanical behavior of the whole MSE compound. Such parameters as the strength of magnetic field and geometry of the MSE sample have influence on the quality of shape adaptation. The evidence presented provides a good basis for the realization of MSE-based actuator and sensor systems with adaptable sensitivity.}, language = {en} } @article{SchuemannMorichKaufholdetal., author = {Sch{\"u}mann, Malte and Morich, J. and Kaufhold, T. and B{\"o}hm, Valter and Zimmermann, Klaus and Odenbach, Stefan}, title = {A mechanical characterisation on multiple timescales of electroconductive magnetorheological elastomers}, series = {Magnetism and Magnetic Materials}, volume = {453}, journal = {Magnetism and Magnetic Materials}, number = {May}, publisher = {Elsevier}, doi = {10.1016/j.jmmm.2018.01.029}, pages = {198 -- 205}, abstract = {Magnetorheological elastomers are a type of smart hybrid material which combines elastic properties of a soft elastomer matrix with magnetic properties of magnetic micro particles. This leads to a material with magnetically controllable mechanical properties of which the magnetorheological effect is the best known. The addition of electroconductive particles to the polymer mix adds electrical properties to the material behaviour. The resulting electrical resistance of the sample can be manipulated by external magnetic fields and mechanical loads. This results in a distinct interplay of mechanical, electrical and magnetic effects with a highly complex time behaviour. In this paper a mechanical characterisation on multiple time scales was conducted to get an insight on the short and long-term electrical and mechanical behaviour of this novel material. The results show a complex resistivity behaviour on several timescales, sensitive to magnetic fields and strain velocity. The observed material exhibits fatigue and relaxation behaviour, whereas the magnetorheological effect appears not to interfere with the piezoresistive properties.}, language = {en} }