@article{OttPalmVogtetal., author = {Ott, Tankred and Palm, Christoph and Vogt, Robert and Oberprieler, Christoph}, title = {GinJinn: An object-detection pipeline for automated feature extraction from herbarium specimens}, series = {Applications in Plant Sciences}, volume = {8}, journal = {Applications in Plant Sciences}, number = {6}, publisher = {Wiley, Botanical Society of America}, issn = {2168-0450}, doi = {10.1002/aps3.11351}, pages = {e11351}, abstract = {PREMISE: The generation of morphological data in evolutionary, taxonomic, and ecological studies of plants using herbarium material has traditionally been a labor-intensive task. Recent progress in machine learning using deep artificial neural networks (deep learning) for image classification and object detection has facilitated the establishment of a pipeline for the automatic recognition and extraction of relevant structures in images of herbarium specimens. METHODS AND RESULTS: We implemented an extendable pipeline based on state-of-the-art deep-learning object-detection methods to collect leaf images from herbarium specimens of two species of the genus Leucanthemum. Using 183 specimens as the training data set, our pipeline extracted one or more intact leaves in 95\% of the 61 test images. CONCLUSIONS: We establish GinJinn as a deep-learning object-detection tool for the automatic recognition and extraction of individual leaves or other structures from herbarium specimens. Our pipeline offers greater flexibility and a lower entrance barrier than previous image-processing approaches based on hand-crafted features.}, subject = {Deep Learning}, language = {en} } @article{SouzaJrMendelStrasseretal., author = {Souza Jr., Luis Antonio de and Mendel, Robert and Strasser, Sophia and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Papa, Jo{\~a}o Paulo and Palm, Christoph}, title = {Convolutional Neural Networks for the evaluation of cancer in Barrett's esophagus: Explainable AI to lighten up the black-box}, series = {Computers in Biology and Medicine}, volume = {135}, journal = {Computers in Biology and Medicine}, publisher = {Elsevier}, issn = {0010-4825}, doi = {10.1016/j.compbiomed.2021.104578}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-20126}, pages = {1 -- 14}, abstract = {Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their level of accountability and transparency must be provided in such evaluations. The reliability related to machine learning predictions must be explained and interpreted, especially if diagnosis support is addressed. For this task, the black-box nature of deep learning techniques must be lightened up to transfer its promising results into clinical practice. Hence, we aim to investigate the use of explainable artificial intelligence techniques to quantitatively highlight discriminative regions during the classification of earlycancerous tissues in Barrett's esophagus-diagnosed patients. Four Convolutional Neural Network models (AlexNet, SqueezeNet, ResNet50, and VGG16) were analyzed using five different interpretation techniques (saliency, guided backpropagation, integrated gradients, input × gradients, and DeepLIFT) to compare their agreement with experts' previous annotations of cancerous tissue. We could show that saliency attributes match best with the manual experts' delineations. Moreover, there is moderate to high correlation between the sensitivity of a model and the human-and-computer agreement. The results also lightened that the higher the model's sensitivity, the stronger the correlation of human and computational segmentation agreement. We observed a relevant relation between computational learning and experts' insights, demonstrating how human knowledge may influence the correct computational learning.}, subject = {Deep Learning}, language = {en} } @misc{EbigboMendelProbstetal., author = {Ebigbo, Alanna and Mendel, Robert and Probst, Andreas and Manzeneder, Johannes and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Palm, Christoph and Messmann, Helmut}, title = {Artificial Intelligence in Early Barrett's Cancer: The Segmentation Task}, series = {Endoscopy}, volume = {51}, journal = {Endoscopy}, number = {04}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/s-0039-1681187}, pages = {6}, abstract = {Aims: The delineation of outer margins of early Barrett's cancer can be challenging even for experienced endoscopists. Artificial intelligence (AI) could assist endoscopists faced with this task. As of date, there is very limited experience in this domain. In this study, we demonstrate the measure of overlap (Dice coefficient = D) between highly experienced Barrett endoscopists and an AI system in the delineation of cancer margins (segmentation task). Methods: An AI system with a deep convolutional neural network (CNN) was trained and tested on high-definition endoscopic images of early Barrett's cancer (n = 33) and normal Barrett's mucosa (n = 41). The reference standard for the segmentation task were the manual delineations of tumor margins by three highly experienced Barrett endoscopists. Training of the AI system included patch generation, patch augmentation and adjustment of the CNN weights. Then, the segmentation results from patch classification and thresholding of the class probabilities. Segmentation results were evaluated using the Dice coefficient (D). Results: The Dice coefficient (D) which can range between 0 (no overlap) and 1 (complete overlap) was computed only for images correctly classified by the AI-system as cancerous. At a threshold of t = 0.5, a mean value of D = 0.72 was computed. Conclusions: AI with CNN performed reasonably well in the segmentation of the tumor region in Barrett's cancer, at least when compared with expert Barrett's endoscopists. AI holds a lot of promise as a tool for better visualization of tumor margins but may need further improvement and enhancement especially in real-time settings.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @inproceedings{ChangLinLeeetal., author = {Chang, Ching-Sheng and Lin, Jin-Fa and Lee, Ming-Ching and Palm, Christoph}, title = {Semantic Lung Segmentation Using Convolutional Neural Networks}, series = {Bildverarbeitung f{\"u}r die Medizin 2020. Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 15. bis 17. M{\"a}rz 2020 in Berlin}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2020. Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 15. bis 17. M{\"a}rz 2020 in Berlin}, editor = {Tolxdorff, Thomas and Deserno, Thomas M. and Handels, Heinz and Maier, Andreas and Maier-Hein, Klaus H. and Palm, Christoph}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-29266-9}, doi = {10.1007/978-3-658-29267-6_17}, pages = {75 -- 80}, abstract = {Chest X-Ray (CXR) images as part of a non-invasive diagnosis method are commonly used in today's medical workflow. In traditional methods, physicians usually use their experience to interpret CXR images, however, there is a large interobserver variance. Computer vision may be used as a standard for assisted diagnosis. In this study, we applied an encoder-decoder neural network architecture for automatic lung region detection. We compared a three-class approach (left lung, right lung, background) and a two-class approach (lung, background). The differentiation of left and right lungs as direct result of a semantic segmentation on basis of neural nets rather than post-processing a lung-background segmentation is done here for the first time. Our evaluation was done on the NIH Chest X-ray dataset, from which 1736 images were extracted and manually annotated. We achieved 94:9\% mIoU and 92\% mIoU as segmentation quality measures for the two-class-model and the three-class-model, respectively. This result is very promising for the segmentation of lung regions having the simultaneous classification of left and right lung in mind.}, subject = {Neuronales Netz}, language = {en} } @inproceedings{MiddelPalmErdt, author = {Middel, Luise and Palm, Christoph and Erdt, Marius}, title = {Synthesis of Medical Images Using GANs}, series = {Uncertainty for safe utilization of machine learning in medical imaging and clinical image-based procedures. First International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019}, booktitle = {Uncertainty for safe utilization of machine learning in medical imaging and clinical image-based procedures. First International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019}, publisher = {Springer Nature}, address = {Cham}, isbn = {978-3-030-32688-3}, issn = {0302-9743}, doi = {10.1007/978-3-030-32689-0_13}, pages = {125 -- 134}, abstract = {The success of artificial intelligence in medicine is based on the need for large amounts of high quality training data. Sharing of medical image data, however, is often restricted by laws such as doctor-patient confidentiality. Although there are publicly available medical datasets, their quality and quantity are often low. Moreover, datasets are often imbalanced and only represent a fraction of the images generated in hospitals or clinics and can thus usually only be used as training data for specific problems. The introduction of generative adversarial networks (GANs) provides a mean to generate artificial images by training two convolutional networks. This paper proposes a method which uses GANs trained on medical images in order to generate a large number of artificial images that could be used to train other artificial intelligence algorithms. This work is a first step towards alleviating data privacy concerns and being able to publicly share data that still contains a substantial amount of the information in the original private data. The method has been evaluated on several public datasets and quantitative and qualitative tests showing promising results.}, subject = {Neuronale Netze}, language = {en} } @inproceedings{SouzaJrPassosMendeletal., author = {Souza Jr., Luis Antonio de and Passos, Leandro A. and Mendel, Robert and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Palm, Christoph and Papa, Jo{\~a}o Paulo}, title = {Fine-tuning Generative Adversarial Networks using Metaheuristics}, series = {Bildverarbeitung f{\"u}r die Medizin 2021. Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2021. Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-33197-9}, doi = {10.1007/978-3-658-33198-6_50}, pages = {205 -- 210}, abstract = {Barrett's esophagus denotes a disorder in the digestive system that affects the esophagus' mucosal cells, causing reflux, and showing potential convergence to esophageal adenocarcinoma if not treated in initial stages. Thus, fast and reliable computer-aided diagnosis becomes considerably welcome. Nevertheless, such approaches usually suffer from imbalanced datasets, which can be addressed through Generative Adversarial Networks (GANs). Such techniques generate realistic images based on observed samples, even though at the cost of a proper selection of its hyperparameters. Many works employed a class of nature-inspired algorithms called metaheuristics to tackle the problem considering distinct deep learning approaches. Therefore, this paper's main contribution is to introduce metaheuristic techniques to fine-tune GANs in the context of Barrett's esophagus identification, as well as to investigate the feasibility of generating high-quality synthetic images for early-cancer assisted identification.}, subject = {Endoskopie}, language = {en} } @misc{RoemmeleMendelRauberetal., author = {R{\"o}mmele, Christoph and Mendel, Robert and Rauber, David and R{\"u}ckert, Tobias and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Endoscopic Diagnosis of Eosinophilic Esophagitis Using a deep Learning Algorithm}, series = {Endoscopy}, volume = {53}, journal = {Endoscopy}, number = {S 01}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/s-0041-1724274}, abstract = {Aims Eosinophilic esophagitis (EoE) is easily missed during endoscopy, either because physicians are not familiar with its endoscopic features or the morphologic changes are too subtle. In this preliminary paper, we present the first attempt to detect EoE in endoscopic white light (WL) images using a deep learning network (EoE-AI). Methods 401 WL images of eosinophilic esophagitis and 871 WL images of normal esophageal mucosa were evaluated. All images were assessed for the Endoscopic Reference score (EREFS) (edema, rings, exudates, furrows, strictures). Images with strictures were excluded. EoE was defined as the presence of at least 15 eosinophils per high power field on biopsy. A convolutional neural network based on the ResNet architecture with several five-fold cross-validation runs was used. Adding auxiliary EREFS-classification branches to the neural network allowed the inclusion of the scores as optimization criteria during training. EoE-AI was evaluated for sensitivity, specificity, and F1-score. In addition, two human endoscopists evaluated the images. Results EoE-AI showed a mean sensitivity, specificity, and F1 of 0.759, 0.976, and 0.834 respectively, averaged over the five distinct cross-validation runs. With the EREFS-augmented architecture, a mean sensitivity, specificity, and F1-score of 0.848, 0.945, and 0.861 could be demonstrated respectively. In comparison, the two human endoscopists had an average sensitivity, specificity, and F1-score of 0.718, 0.958, and 0.793. Conclusions To the best of our knowledge, this is the first application of deep learning to endoscopic images of EoE which were also assessed after augmentation with the EREFS-score. The next step is the evaluation of EoE-AI using an external dataset. We then plan to assess the EoE-AI tool on endoscopic videos, and also in real-time. This preliminary work is encouraging regarding the ability for AI to enhance physician detection of EoE, and potentially to do a true "optical biopsy" but more work is needed.}, language = {en} } @article{RueckertRueckertPalm, author = {R{\"u}ckert, Tobias and R{\"u}ckert, Daniel and Palm, Christoph}, title = {Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art}, series = {Computers in Biology and Medicine}, volume = {169}, journal = {Computers in Biology and Medicine}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.compbiomed.2024.107929}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-69830}, pages = {24}, abstract = {In the field of computer- and robot-assisted minimally invasive surgery, enormous progress has been made in recent years based on the recognition of surgical instruments in endoscopic images and videos. In particular, the determination of the position and type of instruments is of great interest. Current work involves both spatial and temporal information, with the idea that predicting the movement of surgical tools over time may improve the quality of the final segmentations. The provision of publicly available datasets has recently encouraged the development of new methods, mainly based on deep learning. In this review, we identify and characterize datasets used for method development and evaluation and quantify their frequency of use in the literature. We further present an overview of the current state of research regarding the segmentation and tracking of minimally invasive surgical instruments in endoscopic images and videos. The paper focuses on methods that work purely visually, without markers of any kind attached to the instruments, considering both single-frame semantic and instance segmentation approaches, as well as those that incorporate temporal information. The publications analyzed were identified through the platforms Google Scholar, Web of Science, and PubMed. The search terms used were "instrument segmentation", "instrument tracking", "surgical tool segmentation", and "surgical tool tracking", resulting in a total of 741 articles published between 01/2015 and 07/2023, of which 123 were included using systematic selection criteria. A discussion of the reviewed literature is provided, highlighting existing shortcomings and emphasizing the available potential for future developments.}, subject = {Deep Learning}, language = {en} } @misc{ScheppachRauberMendeletal., author = {Scheppach, Markus W. and Rauber, David and Mendel, Robert and Palm, Christoph and Byrne, Michael F. and Messmann, Helmut and Ebigbo, Alanna}, title = {Detection Of Celiac Disease Using A Deep Learning Algorithm}, series = {Endoscopy}, volume = {53}, journal = {Endoscopy}, number = {S 01}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/s-0041-1724970}, abstract = {Aims Celiac disease (CD) is a complex condition caused by an autoimmune reaction to ingested gluten. Due to its polymorphic manifestation and subtle endoscopic presentation, the diagnosis is difficult and thus the disorder is underreported. We aimed to use deep learning to identify celiac disease on endoscopic images of the small bowel. Methods Patients with small intestinal histology compatible with CD (MARSH classification I-III) were extracted retrospectively from the database of Augsburg University hospital. They were compared to patients with no clinical signs of CD and histologically normal small intestinal mucosa. In a first step MARSH III and normal small intestinal mucosa were differentiated with the help of a deep learning algorithm. For this, the endoscopic white light images were divided into five equal-sized subsets. We avoided splitting the images of one patient into several subsets. A ResNet-50 model was trained with the images from four subsets and then validated with the remaining subset. This process was repeated for each subset, such that each subset was validated once. Sensitivity, specificity, and harmonic mean (F1) of the algorithm were determined. Results The algorithm showed values of 0.83, 0.88, and 0.84 for sensitivity, specificity, and F1, respectively. Further data showing a comparison between the detection rate of the AI model and that of experienced endoscopists will be available at the time of the upcoming conference. Conclusions We present the first clinical report on the use of a deep learning algorithm for the detection of celiac disease using endoscopic images. Further evaluation on an external data set, as well as in the detection of CD in real-time, will follow. However, this work at least suggests that AI can assist endoscopists in the endoscopic diagnosis of CD, and ultimately may be able to do a true optical biopsy in live-time.}, language = {en} } @inproceedings{NunesHammerHammeretal., author = {Nunes, Danilo Weber and Hammer, Michael and Hammer, Simone and Uller, Wibke and Palm, Christoph}, title = {Classification of Vascular Malformations Based on T2 STIR Magnetic Resonance Imaging}, series = {Bildverarbeitung f{\"u}r die Medizin 2022: Proceedings, German Workshop on Medical Image Computing, Heidelberg, June 26-28, 2022}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2022: Proceedings, German Workshop on Medical Image Computing, Heidelberg, June 26-28, 2022}, publisher = {Springer Vieweg}, address = {Wiesbaden}, doi = {10.1007/978-3-658-36932-3_57}, pages = {267 -- 272}, abstract = {Vascular malformations (VMs) are a rare condition. They can be categorized into high-flow and low-flow VMs, which is a challenging task for radiologists. In this work, a very heterogeneous set of MRI images with only rough annotations are used for classification with a convolutional neural network. The main focus is to describe the challenging data set and strategies to deal with such data in terms of preprocessing, annotation usage and choice of the network architecture. We achieved a classification result of 89.47 \% F1-score with a 3D ResNet 18.}, language = {en} } @inproceedings{RauberMendelScheppachetal., author = {Rauber, David and Mendel, Robert and Scheppach, Markus W. and Ebigbo, Alanna and Messmann, Helmut and Palm, Christoph}, title = {Analysis of Celiac Disease with Multimodal Deep Learning}, series = {Bildverarbeitung f{\"u}r die Medizin 2022: Proceedings, German Workshop on Medical Image Computing, Heidelberg, June 26-28, 2022}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2022: Proceedings, German Workshop on Medical Image Computing, Heidelberg, June 26-28, 2022}, publisher = {Springer Vieweg}, address = {Wiesbaden}, doi = {10.1007/978-3-658-36932-3_25}, pages = {115 -- 120}, abstract = {Celiac disease is an autoimmune disorder caused by gluten that results in an inflammatory response of the small intestine.We investigated whether celiac disease can be detected using endoscopic images through a deep learning approach. The results show that additional clinical parameters can improve the classification accuracy. In this work, we distinguished between healthy tissue and Marsh III, according to the Marsh score system. We first trained a baseline network to classify endoscopic images of the small bowel into these two classes and then augmented the approach with a multimodality component that took the antibody status into account.}, language = {en} } @misc{OPUS4-1458, title = {Bildverarbeitung f{\"u}r die Medizin 2021}, editor = {Palm, Christoph and Deserno, Thomas M. and Handels, Heinz and Maier, Andreas and Maier-Hein, Klaus H. and Tolxdorff, Thomas}, publisher = {Springer Vieweg}, address = {Wiesbdaden}, isbn = {978-3-658-33197-9}, issn = {1431-472X}, doi = {10.1007/978-3-658-33198-6}, pages = {361}, abstract = {In den letzten Jahren hat sich der Workshop "Bildverarbeitung f{\"u}r die Medizin" durch erfolgreiche Veranstaltungen etabliert. Ziel ist auch 2021 wieder die Darstellung aktueller Forschungsergebnisse und die Vertiefung der Gespr{\"a}che zwischen Wissenschaftlern, Industrie und Anwendern. Die Beitr{\"a}ge dieses Bandes - einige davon in englischer Sprache - umfassen alle Bereiche der medizinischen Bildverarbeitung, insbesondere Bildgebung und -akquisition, Maschinelles Lernen, Bildsegmentierung und Bildanalyse, Visualisierung und Animation, Zeitreihenanalyse, Computerunterst{\"u}tzte Diagnose, Biomechanische Modellierung, Validierung und Qualit{\"a}tssicherung, Bildverarbeitung in der Telemedizin u.v.m.}, subject = {Bildanalyse}, language = {de} } @misc{MendelSouzaJrRauberetal., author = {Mendel, Robert and Souza Jr., Luis Antonio de and Rauber, David and Papa, Jo{\~a}o Paulo and Palm, Christoph}, title = {Abstract: Semi-supervised Segmentation Based on Error-correcting Supervision}, series = {Bildverarbeitung f{\"u}r die Medizin 2021. Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021}, journal = {Bildverarbeitung f{\"u}r die Medizin 2021. Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-33197-9}, doi = {10.1007/978-3-658-33198-6_43}, pages = {178}, abstract = {Pixel-level classification is an essential part of computer vision. For learning from labeled data, many powerful deep learning models have been developed recently. In this work, we augment such supervised segmentation models by allowing them to learn from unlabeled data. Our semi-supervised approach, termed Error-Correcting Supervision, leverages a collaborative strategy. Apart from the supervised training on the labeled data, the segmentation network is judged by an additional network.}, subject = {Deep Learning}, language = {en} } @article{EbigboPalmMessmann, author = {Ebigbo, Alanna and Palm, Christoph and Messmann, Helmut}, title = {Barrett esophagus: What to expect from Artificial Intelligence?}, series = {Best Practice \& Research Clinical Gastroenterology}, volume = {52-53}, journal = {Best Practice \& Research Clinical Gastroenterology}, number = {June-August}, publisher = {Elsevier}, issn = {1521-6918}, doi = {10.1016/j.bpg.2021.101726}, abstract = {The evaluation and assessment of Barrett's esophagus is challenging for both expert and nonexpert endoscopists. However, the early diagnosis of cancer in Barrett's esophagus is crucial for its prognosis, and could save costs. Pre-clinical and clinical studies on the application of Artificial Intelligence (AI) in Barrett's esophagus have shown promising results. In this review, we focus on the current challenges and future perspectives of implementing AI systems in the management of patients with Barrett's esophagus.}, subject = {Deep Learning}, language = {en} } @misc{OPUS4-7115, title = {Bildverarbeitung f{\"u}r die Medizin 2024}, editor = {Maier, Andreas and Deserno, Thomas M. and Handels, Heinz and Maier-Hein, Klaus H. and Palm, Christoph and Tolxdorff, Thomas}, publisher = {Springer}, address = {Wiesbaden}, isbn = {978-3-658-44037-4}, issn = {1431-472X}, doi = {10.1007/978-3-658-44037-4}, pages = {370}, abstract = {Seit mehr als 25 Jahren ist der Workshop "Bildverarbeitung f{\"u}r die Medizin" als erfolgreiche Veranstaltung etabliert. Ziel ist auch 2024 wieder die Darstellung aktueller Forschungsergebnisse und die Vertiefung der Gespr{\"a}che zwischen Wissenschaftlern, Industrie und Anwendern. Die Beitr{\"a}ge dieses Bandes - viele davon in englischer Sprache - umfassen alle Bereiche der medizinischen Bildverarbeitung, insbesondere die Bildgebung und -akquisition, Segmentierung und Analyse, Visualisierung und Animation, computerunterst{\"u}tzte Diagnose sowie bildgest{\"u}tzte Therapieplanung und Therapie. Hierbei kommen Methoden des maschinelles Lernens, der biomechanischen Modellierung sowie der Validierung und Qualit{\"a}tssicherung zum Einsatz.}, subject = {Bildverarbeitung}, language = {de} } @misc{OPUS4-349, title = {Bildverarbeitung f{\"u}r die Medizin 2020}, editor = {Tolxdorff, Thomas and Deserno, Thomas M. and Handels, Heinz and Maier, Andreas and Maier-Hein, Klaus H. and Palm, Christoph}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-29266-9}, doi = {10.1007/978-3-658-29267-6}, abstract = {In den letzten Jahren hat sich der Workshop "Bildverarbeitung f{\"u}r die Medizin" durch erfolgreiche Veranstaltungen etabliert. Ziel ist auch 2020 wieder die Darstellung aktueller Forschungsergebnisse und die Vertiefung der Gespr{\"a}che zwischen Wissenschaftlern, Industrie und Anwendern. Die Beitr{\"a}ge dieses Bandes - einige davon in englischer Sprache - umfassen alle Bereiche der medizinischen Bildverarbeitung, insbesondere Bildgebung und -akquisition, Maschinelles Lernen, Bildsegmentierung und Bildanalyse, Visualisierung und Animation, Zeitreihenanalyse, Computerunterst{\"u}tzte Diagnose, Biomechanische Modellierung, Validierung und Qualit{\"a}tssicherung, Bildverarbeitung in der Telemedizin u.v.m.}, subject = {Bildanalyse}, language = {de} } @misc{OPUS4-6079, title = {Bildverarbeitung f{\"u}r die Medizin 2023}, editor = {Deserno, Thomas M. and Handels, Heinz and Maier, Andreas and Maier-Hein, Klaus H. and Palm, Christoph and Tolxdorff, Thomas}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-41656-0}, issn = {1431-472X}, doi = {10.1007/978-3-658-41657-7}, pages = {317}, abstract = {Seit mehr als 25 Jahren ist der Workshop "Bildverarbeitung f{\"u}r die Medizin" als erfolgreiche Veranstaltung etabliert. Ziel ist auch 2023 wieder die Darstellung aktueller Forschungsergebnisse und die Vertiefung der Gespr{\"a}che zwischen Wissenschaftlern, Industrie und Anwendern. Die Beitr{\"a}ge dieses Bandes - viele davon in englischer Sprache - umfassen alle Bereiche der medizinischen Bildverarbeitung, insbesondere die Bildgebung und -akquisition, Segmentierung und Analyse, Visualisierung und Animation, computerunterst{\"u}tzte Diagnose sowie bildgest{\"u}tzte Therapieplanung und Therapie. Hierbei kommen Methoden des maschinelles Lernens, der biomechanischen Modellierung sowie der Validierung und Qualit{\"a}tssicherung zum Einsatz.}, subject = {Bildverarbeitung}, language = {de} } @misc{OPUS4-7967, title = {Bildverarbeitung f{\"u}r die Medizin 2025}, editor = {Palm, Christoph and Breininger, Katharina and Deserno, Thomas M. and Handels, Heinz and Maier, Andreas and Maier-Hein, Klaus H. and Tolxdorff, Thomas M.}, publisher = {Springer Fachmedien Wiesbaden}, address = {Wiesbaden}, isbn = {978-3-658-47421-8}, issn = {1431-472X}, doi = {10.1007/978-3-658-47422-5}, pages = {XXIII, 354}, abstract = {Die Konferenz "BVM - Bildverarbeitung f{\"u}r die Medizin" ist seit vielen Jahren als die nationale Plattform f{\"u}r den Austausch von Ideen und die Diskussion der neuesten Forschungsergebnisse im Bereich der Medizinischen Bildverarbeitung und der K{\"u}nstlichen Intelligenz (KI) etabliert. Auch 2025 werden wir aktuelle Forschungsergebnisse vorstellen und Gespr{\"a}che zwischen (jungen) Wissenschaftler*innen, Industrie und Anwender*innen vertiefen. Die Beitr{\"a}ge dieses Bandes - die meisten davon in englischer Sprache - umfassen alle Bereiche der medizinischen Bildverarbeitung, insbesondere die Bildgebung und -akquisition, Segmentierung und Analyse, Registrierung, Visualisierung und Animation, computerunterst{\"u}tzte Diagnose sowie bildgest{\"u}tzte Therapieplanung und Therapie. Hierbei kommen Methoden des maschinellen Lernens, der biomechanischen Modellierung sowie der Validierung und Qualit{\"a}tssicherung zum Einsatz. Das Kapitel "Leveraging multiple total body segmentators and anatomy-informed post-processing for segmenting bones in Lung CTs" ist unter einer Creative Commons Attribution 4.0 International License {\"u}ber link.springer.com frei verf{\"u}gbar (Open Access). Die Herausgebenden Prof. Palm forscht im Bereich KI f{\"u}r die Medizin mit einem Schwerpunkt in der Analyse endoskopischer Bilddaten zur computerunterst{\"u}tzten Diagnose und Therapie. Prof. Breininger entwickelt robuste Ans{\"a}tze des maschinellen Lernens in verschiedenen interdisziplin{\"a}ren Bereichen, mit einem Schwerpunkt auf medizinischen Bilddaten. Prof. Deserno forscht in Biosignal- und Bilderzeugung und -verarbeitung, insbesondere in der videobasierten Vitaldatenmessung. Prof. Handels entwickelt problemoptimierte, lernf{\"a}hige Bildverarbeitungsmethoden und integriert diese in hybride Bildverarbeitungssysteme zur Unterst{\"u}tzung der medizinischen Diagnostik und Therapie. Prof. Maier entwickelt Anwendungen in der medizinischen Bildverarbeitung zur Diagnoseunterst{\"u}tzung bis hin zur Schichtbildberechnung durch k{\"u}nstliche Intelligenz. Prof. Maier-Hein forscht im Bereich maschinelles Lernen und entwickelt Open-Source-L{\"o}sungen wie das Medical Imaging Interaction Toolkit (MITK), Kaapana oder das nnU-Net. Prof. em. Tolxdorff ist Experte f{\"u}r maschinelles Lernen, biomedizinisches Datenmanagement, Datenvisualisierung und -analyse sowie Medizinproduktentwicklung in klinischen Workflows.}, subject = {Bildverarbeitung}, language = {de} } @unpublished{MendelRueckertWilhelmetal., author = {Mendel, Robert and R{\"u}ckert, Tobias and Wilhelm, Dirk and R{\"u}ckert, Daniel and Palm, Christoph}, title = {Motion-Corrected Moving Average: Including Post-Hoc Temporal Information for Improved Video Segmentation}, doi = {10.48550/arXiv.2403.03120}, pages = {9}, abstract = {Real-time computational speed and a high degree of precision are requirements for computer-assisted interventions. Applying a segmentation network to a medical video processing task can introduce significant inter-frame prediction noise. Existing approaches can reduce inconsistencies by including temporal information but often impose requirements on the architecture or dataset. This paper proposes a method to include temporal information in any segmentation model and, thus, a technique to improve video segmentation performance without alterations during training or additional labeling. With Motion-Corrected Moving Average, we refine the exponential moving average between the current and previous predictions. Using optical flow to estimate the movement between consecutive frames, we can shift the prior term in the moving-average calculation to align with the geometry of the current frame. The optical flow calculation does not require the output of the model and can therefore be performed in parallel, leading to no significant runtime penalty for our approach. We evaluate our approach on two publicly available segmentation datasets and two proprietary endoscopic datasets and show improvements over a baseline approach.}, subject = {Deep Learning}, language = {en} } @misc{ScheppachMendelProbstetal., author = {Scheppach, Markus W. and Mendel, Robert and Probst, Andreas and Meinikheim, Michael and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Intraprozedurale Strukturerkennung bei Third-Space Endoskopie mithilfe eines Deep-Learning Algorithmus}, series = {Zeitschrift f{\"u}r Gastroenterologie}, volume = {60}, journal = {Zeitschrift f{\"u}r Gastroenterologie}, number = {04}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0042-1745652}, pages = {e250-e251}, abstract = {Einleitung Third-Space Interventionen wie die endoskopische Submukosadissektion (ESD) und die perorale endoskopische Myotomie (POEM) sind technisch anspruchsvoll und mit einem erh{\"o}hten Risiko f{\"u}r intraprozedurale Komplikationen wie Blutung oder Perforation assoziiert. Moderne Computerprogramme zur Unterst{\"u}tzung bei diagnostischen Entscheidungen werden unter Einsatz von k{\"u}nstlicher Intelligenz (KI) in der Endoskopie bereits erfolgreich eingesetzt. Ziel der vorliegenden Arbeit war es, relevante anatomische Strukturen mithilfe eines Deep-Learning Algorithmus zu detektieren und segmentieren, um die Sicherheit und Anwendbarkeit von ESD und POEM zu erh{\"o}hen. Methoden Zw{\"o}lf Videoaufnahmen in voller L{\"a}nge von Third-Space Endoskopien wurden aus der Datenbank des Universit{\"a}tsklinikums Augsburg extrahiert. 1686 Einzelbilder wurden f{\"u}r die Kategorien Submukosa, Blutgef{\"a}ß, Dissektionsmesser und endoskopisches Instrument annotiert und segmentiert. Mit diesem Datensatz wurde ein DeepLabv3+neuronales Netzwerk auf der Basis eines ResNet mit 101 Schichten trainiert und intern anhand der Parameter Intersection over Union (IoU), Dice Score und Pixel Accuracy validiert. Die F{\"a}higkeit des Algorithmus zur Gef{\"a}ßdetektion wurde anhand von 24 Videoclips mit einer Spieldauer von 7 bis 46 Sekunden mit 33 vordefinierten Gef{\"a}ßen evaluiert. Anhand dieses Tests wurde auch die Gef{\"a}ßdetektionsrate eines Experten in der Third-Space Endoskopie ermittelt. Ergebnisse Der Algorithmus zeigte eine Gef{\"a}ßdetektionsrate von 93,94\% mit einer mittleren Rate an falsch positiven Signalen von 1,87 pro Minute. Die Gef{\"a}ßdetektionsrate des Experten lag bei 90,1\% ohne falsch positive Ergebnisse. In der internen Validierung an Einzelbildern wurde eine IoU von 63,47\%, ein mittlerer Dice Score von 76,18\% und eine Pixel Accuracy von 86,61\% ermittelt. Zusammenfassung Dies ist der erste KI-Algorithmus, der f{\"u}r den Einsatz in der therapeutischen Endoskopie entwickelt wurde. Pr{\"a}limin{\"a}re Ergebnisse deuten auf eine mit Experten vergleichbare Detektion von Gef{\"a}ßen w{\"a}hrend der Untersuchung hin. Weitere Untersuchungen sind n{\"o}tig, um die Leistung des Algorithmus im Vergleich zum Experten genauer zu eruieren sowie einen m{\"o}glichen klinischen Nutzen zu ermitteln.}, language = {de} } @article{SouzaJrPachecoPassosetal., author = {Souza Jr., Luis Antonio de and Pacheco, Andr{\´e} G.C. and Passos, Leandro A. and Santana, Marcos Cleison S. and Mendel, Robert and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Palm, Christoph and Papa, Jo{\~a}o Paulo}, title = {DeepCraftFuse: visual and deeply-learnable features work better together for esophageal cancer detection in patients with Barrett's esophagus}, series = {Neural Computing and Applications}, volume = {36}, journal = {Neural Computing and Applications}, publisher = {Springer}, address = {London}, doi = {10.1007/s00521-024-09615-z}, pages = {10445 -- 10459}, abstract = {Limitations in computer-assisted diagnosis include lack of labeled data and inability to model the relation between what experts see and what computers learn. Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis. While deep learning techniques are broad so that unseen information might help learn patterns of interest, human insights to describe objects of interest help in decision-making. This paper proposes a novel approach, DeepCraftFuse, to address the challenge of combining information provided by deep networks with visual-based features to significantly enhance the correct identification of cancerous tissues in patients affected with Barrett's esophagus (BE). We demonstrate that DeepCraftFuse outperforms state-of-the-art techniques on private and public datasets, reaching results of around 95\% when distinguishing patients affected by BE that is either positive or negative to esophageal cancer.}, subject = {Deep Learning}, language = {en} } @misc{GutbrodRauberWeberNunesetal., author = {Gutbrod, Max and Rauber, David and Weber Nunes, Danilo and Palm, Christoph}, title = {Cropped single instrument frames subset from Cholec80 [Data set]}, doi = {10.5281/zenodo.14921670}, abstract = {This dataset is a subset of the original Cholec80 dataset and is used by the OpenMIBOOD framework to evaluate a specific out-of-distribution setting. When using this dataset, it is mandatory to cite the corresponding publication (OpenMIBOOD) and to follow the acknowledgement and citation requirements of the original dataset (Cholec80). The original Cholec80 dataset (associated paper,Homepage) consists of 80 cholecystectomy surgery videos recorded at 25 fps, performed by 13 surgeons. It includes phase annotations (25 fps) and tool presence labels (1 fps), with phase definitions provided by a senior surgeon. A tool is considered present if at least half of its tip is visible. The dataset categorizes tools into seven types: Grasper, Bipolar, Hook, Scissors, Clipper, Irrigator, and Specimen bag. Multiple tools may be present in each frame. Additionally, 76 of the 80 videos exhibit a strong black vignette. For this dataset subset, frames were extracted based on tool presence labels, selecting only those containing Grasper, Bipolar, Hook, or Clipper while ensuring that only a single tool appears per frame. To enhance visual consistency, the black vignette was removed by extracting an inner rectangular region, where applicable.}, language = {en} }