@article{ChaloupkaRaptisZachetal., author = {Chaloupka, I. and Raptis, Georgios and Zach, A. and Br{\"a}ndlin, K. and Meier-Ewert, H.}, title = {Rolle der quantitativen CMV-DNA-Bestimmungen in der Diagnostik und Therapie der Cytomegalovirusinfektion bei immunsupprimierten Patienten}, series = {Jahrestagung der Gesellschaft f{\"u}r Virologie in Wien, April 2000}, journal = {Jahrestagung der Gesellschaft f{\"u}r Virologie in Wien, April 2000}, subject = {Cytomegalie-Virus}, language = {de} } @article{SouzaJrPalmMendeletal., author = {Souza Jr., Luis Antonio de and Palm, Christoph and Mendel, Robert and Hook, Christian and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Weber, Silke A. T. and Papa, Jo{\~a}o Paulo}, title = {A survey on Barrett's esophagus analysis using machine learning}, series = {Computers in Biology and Medicine}, volume = {96}, journal = {Computers in Biology and Medicine}, publisher = {Elsevier}, doi = {10.1016/j.compbiomed.2018.03.014}, pages = {203 -- 213}, abstract = {This work presents a systematic review concerning recent studies and technologies of machine learning for Barrett's esophagus (BE) diagnosis and treatment. The use of artificial intelligence is a brand new and promising way to evaluate such disease. We compile some works published at some well-established databases, such as Science Direct, IEEEXplore, PubMed, Plos One, Multidisciplinary Digital Publishing Institute (MDPI), Association for Computing Machinery (ACM), Springer, and Hindawi Publishing Corporation. Each selected work has been analyzed to present its objective, methodology, and results. The BE progression to dysplasia or adenocarcinoma shows a complex pattern to be detected during endoscopic surveillance. Therefore, it is valuable to assist its diagnosis and automatic identification using computer analysis. The evaluation of the BE dysplasia can be performed through manual or automated segmentation through machine learning techniques. Finally, in this survey, we reviewed recent studies focused on the automatic detection of the neoplastic region for classification purposes using machine learning methods.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @article{EbigboPalmProbstetal., author = {Ebigbo, Alanna and Palm, Christoph and Probst, Andreas and Mendel, Robert and Manzeneder, Johannes and Prinz, Friederike and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Siersema, Peter and Messmann, Helmut}, title = {A technical review of artificial intelligence as applied to gastrointestinal endoscopy: clarifying the terminology}, series = {Endoscopy International Open}, volume = {07}, journal = {Endoscopy International Open}, number = {12}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/a-1010-5705}, pages = {1616 -- 1623}, abstract = {The growing number of publications on the application of artificial intelligence (AI) in medicine underlines the enormous importance and potential of this emerging field of research. In gastrointestinal endoscopy, AI has been applied to all segments of the gastrointestinal tract most importantly in the detection and characterization of colorectal polyps. However, AI research has been published also in the stomach and esophagus for both neoplastic and non-neoplastic disorders. The various technical as well as medical aspects of AI, however, remain confusing especially for non-expert physicians. This physician-engineer co-authored review explains the basic technical aspects of AI and provides a comprehensive overview of recent publications on AI in gastrointestinal endoscopy. Finally, a basic insight is offered into understanding publications on AI in gastrointestinal endoscopy.}, subject = {Diagnose}, language = {en} } @article{EbigboMendelProbstetal., author = {Ebigbo, Alanna and Mendel, Robert and Probst, Andreas and Manzeneder, Johannes and Prinz, Friederike and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Palm, Christoph and Messmann, Helmut}, title = {Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus}, series = {Gut}, volume = {69}, journal = {Gut}, number = {4}, publisher = {BMJ}, address = {London}, doi = {10.1136/gutjnl-2019-319460}, pages = {615 -- 616}, abstract = {Based on previous work by our group with manual annotation of visible Barrett oesophagus (BE) cancer images, a real-time deep learning artificial intelligence (AI) system was developed. While an expert endoscopist conducts the endoscopic assessment of BE, our AI system captures random images from the real-time camera livestream and provides a global prediction (classification), as well as a dense prediction (segmentation) differentiating accurately between normal BE and early oesophageal adenocarcinoma (EAC). The AI system showed an accuracy of 89.9\% on 14 cases with neoplastic BE.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @article{EbigboMendelRueckertetal., author = {Ebigbo, Alanna and Mendel, Robert and R{\"u}ckert, Tobias and Schuster, Laurin and Probst, Andreas and Manzeneder, Johannes and Prinz, Friederike and Mende, Matthias and Steinbr{\"u}ck, Ingo and Faiss, Siegbert and Rauber, David and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Deprez, Pierre and Oyama, Tsuneo and Takahashi, Akiko and Seewald, Stefan and Sharma, Prateek and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut}, title = {Endoscopic prediction of submucosal invasion in Barrett's cancer with the use of Artificial Intelligence: A pilot Study}, series = {Endoscopy}, volume = {53}, journal = {Endoscopy}, number = {09}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/a-1311-8570}, pages = {878 -- 883}, abstract = {Background and aims: The accurate differentiation between T1a and T1b Barrett's cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett's cancer white-light images. Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett's cancer. Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively. Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett's cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI.}, subject = {Maschinelles Lernen}, language = {en} } @article{SouzaJrPassosMendeletal., author = {Souza Jr., Luis Antonio de and Passos, Leandro A. and Mendel, Robert and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Palm, Christoph and Papa, Jo{\~a}o Paulo}, title = {Assisting Barrett's esophagus identification using endoscopic data augmentation based on Generative Adversarial Networks}, series = {Computers in Biology and Medicine}, volume = {126}, journal = {Computers in Biology and Medicine}, number = {November}, publisher = {Elsevier}, doi = {10.1016/j.compbiomed.2020.104029}, pages = {12}, abstract = {Barrett's esophagus figured a swift rise in the number of cases in the past years. Although traditional diagnosis methods offered a vital role in early-stage treatment, they are generally time- and resource-consuming. In this context, computer-aided approaches for automatic diagnosis emerged in the literature since early detection is intrinsically related to remission probabilities. However, they still suffer from drawbacks because of the lack of available data for machine learning purposes, thus implying reduced recognition rates. This work introduces Generative Adversarial Networks to generate high-quality endoscopic images, thereby identifying Barrett's esophagus and adenocarcinoma more precisely. Further, Convolution Neural Networks are used for feature extraction and classification purposes. The proposed approach is validated over two datasets of endoscopic images, with the experiments conducted over the full and patch-split images. The application of Deep Convolutional Generative Adversarial Networks for the data augmentation step and LeNet-5 and AlexNet for the classification step allowed us to validate the proposed methodology over an extensive set of datasets (based on original and augmented sets), reaching results of 90\% of accuracy for the patch-based approach and 85\% for the image-based approach. Both results are based on augmented datasets and are statistically different from the ones obtained in the original datasets of the same kind. Moreover, the impact of data augmentation was evaluated in the context of image description and classification, and the results obtained using synthetic images outperformed the ones over the original datasets, as well as other recent approaches from the literature. Such results suggest promising insights related to the importance of proper data for the accurate classification concerning computer-assisted Barrett's esophagus and adenocarcinoma detection.}, subject = {Maschinelles Lernen}, language = {en} } @article{SchulzePalmKerschbaumetal., author = {Schulze, Elke and Palm, Christoph and Kerschbaum, Maximilian and Seidel, Roman and Lehmann, Lars and Koller, Michael and Pfingsten, Andrea}, title = {KI-gest{\"u}tzte Untersuchung in der nicht-operativen Versorgung symptomgebender Erkrankungen des Kniegelenks - ein multiprofessionelles Konzept (KINEESIO)}, series = {MSK - Muskuloskelettale Physiotherapie}, volume = {28}, journal = {MSK - Muskuloskelettale Physiotherapie}, number = {5}, publisher = {Thieme}, issn = {2701-6986}, doi = {10.1055/a-2402-9982}, pages = {312 -- 321}, abstract = {Beschwerdebilder am Kniegelenk aufgrund muskuloskelettaler degenerativer oder verletzungsbedingter Erkrankungen sind h{\"a}ufig, nehmen im Alter zu und sind mit der steigenden Inanspruchnahme {\"a}rztlicher und therapeutischer Behandlungsmaßnahmen verbunden. Einer erfolgreichen Therapie gehen oft notwendige zeit- und ressourcenaufwendige Untersuchungen zur Erkennung und Differenzierung der patient*innenspezifischen Problematik voraus. Im Zusammenhang mit der nicht-operativen Versorgung des Kniegelenks hat ein sektor{\"u}bergreifendes multiprofessionelles Forschungsteam ein Konzept entwickelt, um k{\"u}nstliche neuronale Netze so zu trainieren, dass sie bei der {\"a}rztlichen und physiotherapeutischen Untersuchung unterst{\"u}tzend Einsatz finden k{\"o}nnen. Denn gerade in der Erfassung und Auswertung umfassender Datenmengen liegen große Potenziale in der K{\"u}nstlichen Intelligenz (KI) im Gesundheitswesen. Das Projekt KINEESIO trainiert und testet KI-gest{\"u}tzte Screening- Tools zur Untersuchung von Patient*innen mit Kniegelenkerkrankungen. Diese unterst{\"u}tzen die Abl{\"a}ufe zwischen Leistungserbringern und Patient*innen, tragen zu einer verbesserten Differenzierung individueller Beschwerdebilder bei und dienen Entscheidungsprozessen f{\"u}r eine ad{\"a}quate Versorgung. Dadurch sollen Ressourcen im Gesundheitswesen geschont und eine qualitativ hochwertige Therapie ausreichend erm{\"o}glicht werden.}, language = {de} } @misc{EbigboMendelTziatziosetal., author = {Ebigbo, Alanna and Mendel, Robert and Tziatzios, Georgios and Probst, Andreas and Palm, Christoph and Messmann, Helmut}, title = {Real-Time Diagnosis of an Early Barrett's Carcinoma using Artificial Intelligence (AI) - Video Case Demonstration}, series = {Endoscopy}, volume = {52}, journal = {Endoscopy}, number = {S 01}, publisher = {Thieme}, doi = {10.1055/s-0040-1704075}, pages = {S23}, abstract = {Introduction We present a clinical case showing the real-time detection, characterization and delineation of an early Barrett's cancer using AI. Patients and methods A 70-year old patient with a long-segment Barrett's esophagus (C5M7) was assessed with an AI algorithm. Results The AI system detected a 10 mm focal lesion and AI characterization predicted cancer with a probability of >90\%. After ESD resection, histopathology showed mucosal adenocarcinoma (T1a (m), R0) confirming AI diagnosis. Conclusion We demonstrate the real-time AI detection, characterization and delineation of a small and early mucosal Barrett's cancer.}, subject = {Speiser{\"o}hrenkrebs}, language = {en} } @article{PassosSouzaJrMendeletal., author = {Passos, Leandro A. and Souza Jr., Luis Antonio de and Mendel, Robert and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Palm, Christoph and Papa, Jo{\~a}o Paulo}, title = {Barrett's esophagus analysis using infinity Restricted Boltzmann Machines}, series = {Journal of Visual Communication and Image Representation}, volume = {59}, journal = {Journal of Visual Communication and Image Representation}, publisher = {Elsevier}, doi = {10.1016/j.jvcir.2019.01.043}, pages = {475 -- 485}, abstract = {The number of patients with Barret's esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett's esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @inproceedings{SouzaJrAfonsoPalmetal., author = {Souza Jr., Luis Antonio de and Afonso, Luis Claudio Sugi and Palm, Christoph and Papa, Jo{\~a}o Paulo}, title = {Barrett's Esophagus Identification Using Optimum-Path Forest}, series = {Proceedings of the 30th Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T 2017), Niter{\´o}i, Rio de Janeiro, Brazil, 2017, 17-20 October}, booktitle = {Proceedings of the 30th Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T 2017), Niter{\´o}i, Rio de Janeiro, Brazil, 2017, 17-20 October}, doi = {10.1109/SIBGRAPI.2017.47}, pages = {308 -- 314}, abstract = {Computer-assisted analysis of endoscopic images can be helpful to the automatic diagnosis and classification of neoplastic lesions. Barrett's esophagus (BE) is a common type of reflux that is not straight forward to be detected by endoscopic surveillance, thus being way susceptible to erroneous diagnosis, which can cause cancer when not treated properly. In this work, we introduce the Optimum-Path Forest (OPF) classifier to the task of automatic identification of Barrett'sesophagus, with promising results and outperforming the well known Support Vector Machines (SVM) in the aforementioned context. We consider describing endoscopic images by means of feature extractors based on key point information, such as the Speeded up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT), for further designing a bag-of-visual-wordsthat is used to feed both OPF and SVM classifiers. The best results were obtained by means of the OPF classifier for both feature extractors, with values lying on 0.732 (SURF) - 0.735(SIFT) for sensitivity, 0.782 (SURF) - 0.806 (SIFT) for specificity, and 0.738 (SURF) - 0.732 (SIFT) for the accuracy.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @article{EbigboMendelProbstetal., author = {Ebigbo, Alanna and Mendel, Robert and Probst, Andreas and Manzeneder, Johannes and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Palm, Christoph and Messmann, Helmut}, title = {Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma}, series = {GuT}, volume = {68}, journal = {GuT}, number = {7}, publisher = {British Society of Gastroenterology}, doi = {10.1136/gutjnl-2018-317573}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-68}, pages = {1143 -- 1145}, abstract = {Computer-aided diagnosis using deep learning (CAD-DL) may be an instrument to improve endoscopic assessment of Barrett's oesophagus (BE) and early oesophageal adenocarcinoma (EAC). Based on still images from two databases, the diagnosis of EAC by CAD-DL reached sensitivities/specificities of 97\%/88\% (Augsburg data) and 92\%/100\% (Medical Image Computing and Computer-Assisted Intervention [MICCAI] data) for white light (WL) images and 94\%/80\% for narrow band images (NBI) (Augsburg data), respectively. Tumour margins delineated by experts into images were detected satisfactorily with a Dice coefficient (D) of 0.72. This could be a first step towards CAD-DL for BE assessment. If developed further, it could become a useful adjunctive tool for patient management.}, subject = {Speiser{\"o}hrenkrebs}, language = {en} } @inproceedings{SouzaJrHookPapaetal., author = {Souza Jr., Luis Antonio de and Hook, Christian and Papa, Jo{\~a}o Paulo and Palm, Christoph}, title = {Barrett's Esophagus Analysis Using SURF Features}, series = {Bildverarbeitung f{\"u}r die Medizin 2017; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. M{\"a}rz 2017 in Heidelberg}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2017; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. M{\"a}rz 2017 in Heidelberg}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-662-54345-0_34}, pages = {141 -- 146}, abstract = {The development of adenocarcinoma in Barrett's esophagus is difficult to detect by endoscopic surveillance of patients with signs of dysplasia. Computer assisted diagnosis of endoscopic images (CAD) could therefore be most helpful in the demarcation and classification of neoplastic lesions. In this study we tested the feasibility of a CAD method based on Speeded up Robust Feature Detection (SURF). A given database containing 100 images from 39 patients served as benchmark for feature based classification models. Half of the images had previously been diagnosed by five clinical experts as being "cancerous", the other half as "non-cancerous". Cancerous image regions had been visibly delineated (masked) by the clinicians. SURF features acquired from full images as well as from masked areas were utilized for the supervised training and testing of an SVM classifier. The predictive accuracy of the developed CAD system is illustrated by sensitivity and specificity values. The results based on full image matching where 0.78 (sensitivity) and 0.82 (specificity) were achieved, while the masked region approach generated results of 0.90 and 0.95, respectively.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @inproceedings{MendelEbigboProbstetal., author = {Mendel, Robert and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Palm, Christoph}, title = {Barrett's Esophagus Analysis Using Convolutional Neural Networks}, series = {Bildverarbeitung f{\"u}r die Medizin 2017; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. M{\"a}rz 2017 in Heidelberg}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2017; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. M{\"a}rz 2017 in Heidelberg}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-662-54345-0_23}, pages = {80 -- 85}, abstract = {We propose an automatic approach for early detection of adenocarcinoma in the esophagus. High-definition endoscopic images (50 cancer, 50 Barrett) are partitioned into a dataset containing approximately equal amounts of patches showing cancerous and non-cancerous regions. A deep convolutional neural network is adapted to the data using a transfer learning approach. The final classification of an image is determined by at least one patch, for which the probability being a cancer patch exceeds a given threshold. The model was evaluated with leave one patient out cross-validation. With sensitivity and specificity of 0.94 and 0.88, respectively, our findings improve recently published results on the same image data base considerably. Furthermore, the visualization of the class probabilities of each individual patch indicates, that our approach might be extensible to the segmentation domain.}, subject = {Speiser{\"o}hrenkrebs}, language = {en} } @misc{MeinikheimMendelScheppachetal., author = {Meinikheim, Michael and Mendel, Robert and Scheppach, Markus W. and Probst, Andreas and Prinz, Friederike and Schwamberger, Tanja and Schlottmann, Jakob and G{\"o}lder, Stefan Karl and Walter, Benjamin and Steinbr{\"u}ck, Ingo and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {INFLUENCE OF AN ARTIFICIAL INTELLIGENCE (AI) BASED DECISION SUPPORT SYSTEM (DSS) ON THE DIAGNOSTIC PERFORMANCE OF NON-EXPERTS IN BARRETT´S ESOPHAGUS RELATED NEOPLASIA (BERN)}, series = {Endoscopy}, volume = {54}, journal = {Endoscopy}, number = {S 01}, publisher = {Thieme}, doi = {10.1055/s-00000012}, pages = {S39}, abstract = {Aims Barrett´s esophagus related neoplasia (BERN) is difficult to detect and characterize during endoscopy, even for expert endoscopists. We aimed to assess the add-on effect of an Artificial Intelligence (AI) algorithm (Barrett-Ampel) as a decision support system (DSS) for non-expert endoscopists in the evaluation of Barrett's esophagus (BE) and BERN. Methods Twelve videos with multimodal imaging white light (WL), narrow-band imaging (NBI), texture and color enhanced imaging (TXI) of histologically confirmed BE and BERN were assessed by expert and non-expert endoscopists. For each video, endoscopists were asked to identify the area of BERN and decide on the biopsy spot. Videos were assessed by the AI algorithm and regions of BERN were highlighted in real-time by a transparent overlay. Finally, endoscopists were shown the AI videos and asked to either confirm or change their initial decision based on the AI support. Results Barrett-Ampel correctly identified all areas of BERN, irrespective of the imaging modality (WL, NBI, TXI), but misinterpreted two inflammatory lesions (Accuracy=75\%). Expert endoscopists had a similar performance (Accuracy=70,8\%), while non-experts had an accuracy of 58.3\%. When AI was implemented as a DSS, non-expert endoscopists improved their diagnostic accuracy to 75\%. Conclusions AI may have the potential to support non-expert endoscopists in the assessment of videos of BE and BERN. Limitations of this study include the low number of videos used. Randomized clinical trials in a real-life setting should be performed to confirm these results.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @misc{MeinikheimMendelProbstetal., author = {Meinikheim, Michael and Mendel, Robert and Probst, Andreas and Scheppach, Markus W. and Messmann, Helmut and Palm, Christoph and Ebigbo, Alanna}, title = {Barrett-Ampel}, series = {Zeitschrift f{\"u}r Gastroenterologie}, volume = {60}, journal = {Zeitschrift f{\"u}r Gastroenterologie}, number = {08}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/s-0042-1755109}, abstract = {Hintergrund Adenokarzinome des {\"O}sophagus sind bis heute mit einer infausten Prognose vergesellschaftet (1). Obwohl Endoskopiker mit Barrett-{\"O}sophagus als Pr{\"a}kanzerose konfrontiert werden, ist vor allem f{\"u}r nicht-Experten die Differenzierung zwischen Barrett-{\"O}sophagus ohne Dysplasie und assoziierten Neoplasien mitunter schwierig. Existierende Biopsieprotokolle (z.B. Seattle Protokoll) sind oftmals unzuverl{\"a}ssig (2). Eine fr{\"u}hzeitige Diagnose des Adenokarzinoms ist allerdings von fundamentaler Bedeutung f{\"u}r die Prognose des Patienten. Forschungsansatz Auf der Grundlage dieser Problematik, entwickelten wir in Kooperation mit dem Forschungslabor „Regensburg Medical Image Computing (ReMIC)" der OTH Regensburg ein auf k{\"u}nstlicher Intelligenz (KI) basiertes Entscheidungsunterst{\"u}tzungssystem (CDSS). Das auf einer DeepLabv3+ neuronalen Netzwerkarchitektur basierende CDSS differenziert mittels Mustererkennung Barrett- {\"O}sophagus ohne Dysplasie von Barrett-{\"O}sophagus mit Dysplasie bzw. Neoplasie („Klassifizierung"). Hierbei werden gemittelte Ausgabewahrscheinlichkeiten mit einem vom Benutzer definierten Schwellenwert verglichen. F{\"u}r Vorhersagen, die den Schwellenwert {\"u}berschreiten, berechnen wir die Kontur der Region und die Fl{\"a}che. Sobald die vorhergesagte L{\"a}sion eine bestimmte Gr{\"o}ße in der Eingabe {\"u}berschreitet, heben wir sie und ihren Umriss hervor. So erm{\"o}glicht eine farbkodierte Visualisierung eine Abgrenzung zwischen Dysplasie bzw. Neoplasie und normalem Barrett-Epithel („Segmentierung"). In einer Studie an Bildern in „Weißlicht" (WL) und „Narrow Band Imaging" (NBI) demonstrierten wir eine Sensitivit{\"a}t von mehr als 90\% und eine Spezifit{\"a}t von mehr als 80\% (3). In einem n{\"a}chsten Schritt, differenzierte unser KI-Algorithmus Barrett- Metaplasien von assoziierten Neoplasien anhand von zuf{\"a}llig abgegriffenen Bildern in Echtzeit mit einer Accuracy von 89.9\% (4). Darauf folgend, entwickelten wir unser System dahingehend weiter, dass unser Algorithmus nun auch dazu in der Lage ist, Untersuchungsvideos in WL, NBI und „Texture and Color Enhancement Imaging" (TXI) in Echtzeit zu analysieren (5). Aktuell f{\"u}hren wir eine Studie in einem randomisiert-kontrollierten Ansatz an unver{\"a}nderten Untersuchungsvideos in WL, NBI und TXI durch. Ausblick Um Patienten mit aus Barrett-Metaplasien resultierenden Neoplasien fr{\"u}hestm{\"o}glich an „High-Volume"-Zentren {\"u}berweisen zu k{\"o}nnen, soll unser KI-Algorithmus zuk{\"u}nftig vor allem Endoskopiker ohne extensive Erfahrung bei der Beurteilung von Barrett- {\"O}sophagus in der Krebsfr{\"u}herkennung unterst{\"u}tzen.}, subject = {Speiser{\"o}hrenkrebs}, language = {de} } @article{SouzaJrPachecoPassosetal., author = {Souza Jr., Luis Antonio de and Pacheco, Andr{\´e} G.C. and Passos, Leandro A. and Santana, Marcos Cleison S. and Mendel, Robert and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Palm, Christoph and Papa, Jo{\~a}o Paulo}, title = {DeepCraftFuse: visual and deeply-learnable features work better together for esophageal cancer detection in patients with Barrett's esophagus}, series = {Neural Computing and Applications}, volume = {36}, journal = {Neural Computing and Applications}, publisher = {Springer}, address = {London}, doi = {10.1007/s00521-024-09615-z}, pages = {10445 -- 10459}, abstract = {Limitations in computer-assisted diagnosis include lack of labeled data and inability to model the relation between what experts see and what computers learn. Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis. While deep learning techniques are broad so that unseen information might help learn patterns of interest, human insights to describe objects of interest help in decision-making. This paper proposes a novel approach, DeepCraftFuse, to address the challenge of combining information provided by deep networks with visual-based features to significantly enhance the correct identification of cancerous tissues in patients affected with Barrett's esophagus (BE). We demonstrate that DeepCraftFuse outperforms state-of-the-art techniques on private and public datasets, reaching results of around 95\% when distinguishing patients affected by BE that is either positive or negative to esophageal cancer.}, subject = {Deep Learning}, language = {en} }