@article{LaumerWudyDrexleretal., author = {Laumer, Tobias and Wudy, Katrin and Drexler, Maximilian and Amend, Philipp and Roth, Stephan and Drummer, Dietmar and Schmidt, Michael}, title = {Fundamental investigation of laser beam melting of polymers for additive manufacture}, series = {Journal of Laser Applications}, volume = {26}, journal = {Journal of Laser Applications}, number = {4}, publisher = {AIP Publishing}, issn = {1938-1387}, doi = {10.2351/1.4892848}, abstract = {By selective laser sintering (SLS), polymer powders are molten layer by layer to build conventional prototypes or parts in small series with geometrical freedom that cannot be achieved by other manufacturing technologies. The SLS process is mainly defined by the beam-matter interaction between powder material, laser radiation and different material characteristics by itself. However the determination of these different material characteristics is problematic because powder material imposes certain requirements that cannot sufficiently be provided by conventional measurement methods. Hence new fundamental investigation methods to determine the optical and thermal material characteristics like the thermal diffusivity, thermal conductivity, or the influence of different heating rates on the melting behavior are presented in this paper. The different analysis methods altogether improve the process of understanding to allow recommendations for the future process controlling.}, language = {en} } @article{OsmanlicWudyLaumeretal., author = {Osmanlic, Fuad and Wudy, Katrin and Laumer, Tobias and Schmidt, Michael and Drummer, Dietmar and K{\"o}rner, Carolin}, title = {Modeling of Laser Beam Absorption in a Polymer Powder Bed}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {7}, publisher = {MDPI}, doi = {10.3390/polym10070784}, pages = {1 -- 11}, abstract = {In order to understand the absorption characteristic, a ray trace model is developed by taking into account the reflection, absorption and refraction. The ray paths are resolved on a sub-powder grid. For validation, the simulation results are compared to analytic solutions of the irradiation of the laser beam onto a plain surface. In addition, the absorptance, reflectance and transmittance of PA12 powder layers measured by an integration sphere setup are compared with the numerical results of our model. It is shown that the effective penetration depth can be lower than the penetration depth in bulk material for polymer powders and, therefore, can increase the energy density at the powder bed surface. The implications for modeling of the selective laser sintering (SLS) process and the processability of fine powder distributions and high powder bed densities are discussed.}, language = {en} }