@inproceedings{HerdlBachmannWohlfartsstaetteretal., author = {Herdl, Florian and Bachmann, Michael and Wohlfartsst{\"a}tter, Dominik and D{\"u}sberg, Felix and Dudeck, Markus and Eder, Magdalena and Meyer, Manuel and Pahlke, Andreas and Edler, Simon and Schels, Andreas and Hansch, Walter and Schreiner, Rupert and Wohlfartsstatter, Dominik and Dusberg, Felix}, title = {A novel current dependent field emission performance test}, series = {2021 34th International Vacuum Nanoelectronics Conference (IVNC): 5-9 July 2021, Lyon, France}, booktitle = {2021 34th International Vacuum Nanoelectronics Conference (IVNC): 5-9 July 2021, Lyon, France}, doi = {10.1109/IVNC52431.2021.9600695}, pages = {1 -- 2}, abstract = {A current dependent performance test for comparison of different field emitter arrays is introduced. Statistical analysis is enabled due to a short measurement time and as a main feature the electric field shift, comparable to the degradation of the emitter is examined. Significance of the test method is shown by a comparison of field emitter arrays with different doping levels.}, language = {en} } @article{SchelsHerdlHausladenetal., author = {Schels, Andreas and Herdl, Florian and Hausladen, Matthias and Wohlfartsst{\"a}tter, Dominik and Edler, Simon and Bachmann, Michael and Pahlke, Andreas and Schreiner, Rupert and Hansch, Walter}, title = {Quantitative Field Emission Imaging for Studying the Doping-Dependent Emission Behavior of Silicon Field Emitter Arrays}, series = {Micromachines}, volume = {14}, journal = {Micromachines}, number = {11}, publisher = {MDPI}, doi = {10.3390/mi14112008}, abstract = {Field emitter arrays (FEAs) are a promising component for novel vacuum micro- and nanoelectronic devices, such as microwave power amplifiers or fast-switching X-ray sources. However, the interrelated mechanisms responsible for FEA degradation and failure are not fully understood. Therefore, we present a measurement method for quantitative observation of individual emission sites during integral operation using a low-cost, commercially available CMOS imaging sensor. The emission and degradation behavior of three differently doped FEAs is investigated in current-regulated operation. The measurements reveal that the limited current of the p-doped emitters leads to an activation of up to 55\% of the individual tips in the array, while the activation of the n-type FEA stopped at around 30\%. This enhanced activation results in a more continuous and uniform current distribution for the p-type FEA. An analysis of the individual emitter characteristics before and after a constant current measurement provides novel perspectives on degradation behavior. A burn-in process that trims the emitting tips to an integral current-specific ideal field enhancement factor is observed. In this process, blunt tips are sharpened while sharp tips are dulled, resulting in homogenization within the FEA. The methodology is described in detail, making it easily adaptable for other groups to apply in the further development of promising FEAs.}, language = {en} } @inproceedings{SchelsHerdlHausladenetal., author = {Schels, Andreas and Herdl, Florian and Hausladen, Matthias and Wohlfartsst{\"a}tter, Dominik and Bachmann, Michael and Edler, Simon and D{\"u}sberg, Felix and Pahlke, Andreas and Buchner, Philipp and Schreiner, Rupert and Hansch, Walter}, title = {Beta Factor Mapping of Individual Emitting Tips During Integral Operation of Field Emission Arrays}, series = {2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA}, booktitle = {2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA}, publisher = {IEEE}, isbn = {979-8-3503-0143-4}, doi = {10.1109/IVNC57695.2023.10188957}, pages = {224 -- 226}, abstract = {Emission uniformity mappings of field emitter arrays provide important insight into degradation mechanisms, but are often laborious, non-integral, costly, or not quantifiable. Here, a low-cost Raspberry Pi HQ camera is used as an extraction anode to quantify the emission distribution in field emitter arrays. A verification measurement using controlled SEM electron beams proves, that current-voltage characteristics of individual emission sites can be determined by combining the integral electrical data with the image data. The characteristics are used to quantify the field enhancement factors of an 30x30 silicon field emitter array during integral operation. Comparison of the field enhancement factor distributions before and after a one-hour constant current operation at 1 µA shows an increase from 50 actively emitting tips before to 156 after the measurement. It is shown, that the distribution of field enhancement factors shifts towards lower values, due to the increasing degradation for high field enhancement tips, especially above 1500.}, language = {en} } @inproceedings{HerdlKueddelsmannSchelsetal., author = {Herdl, Florian and Kueddelsmann, Maximillian J. and Schels, Andreas and Bachmann, Michael and Edler, Simon and Wohlfartsst{\"a}tter, Dominik and D{\"u}sberg, Felix and Prugger, Alexander and Dillig, Michael and Dams, Florian and Schreiner, Rupert and Coile{\´a}in, Cormac {\´O}. and Zimmermann, Stefan and Pahlke, Andreas and Duesberg, Georg S.}, title = {Characterization and Operation of Graphene-Oxide-Semiconductor Emitters at Atmospheric Pressure Levels}, series = {2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA}, booktitle = {2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA}, publisher = {IEEE}, isbn = {979-8-3503-0143-4}, doi = {10.1109/IVNC57695.2023.10188974}, pages = {14 -- 16}, abstract = {In recent years Graphene-Oxide-Semiconductor (GOS) electron emitters have attracted a lot of interest due to their outstanding durability in modest vacuum conditions. However, the performance at ambient pressure remains largely unexplored. In this study GOS-emitters are characterized in nitrogen and air at atmospheric pressure, and compared with their vacuum characteristics. For this purpose, lifetime and IV-characteristics measurements are shown. Furthermore, the GOS-emitter was operated as an ionization source for ion mobility spectrometry (IMS) at ambient conditions.}, language = {en} } @inproceedings{HausladenSchelsBuchneretal., author = {Hausladen, Matthias and Schels, Andreas and Buchner, Philipp and Bartl, Mathias and Asgharzade, Ali and Edler, Simon and Wohlfartsst{\"a}tter, Dominik and Bachmann, Michael and Schreiner, Rupert}, title = {Improved Method for Determining the Distribution of FEA Currents by Optical CMOS Sensors}, series = {37th International Vacuum Nanoelectronics Conference (IVNC), 15-19 July 2024, Brno, Czech Republic}, booktitle = {37th International Vacuum Nanoelectronics Conference (IVNC), 15-19 July 2024, Brno, Czech Republic}, publisher = {IEEE}, doi = {10.1109/IVNC63480.2024.10652543}, pages = {1 -- 2}, abstract = {CMOS image sensors are utilized to determine the time- and spatially-resolved distribution of the electron emission of silicon field emission arrays. During initial experiments, rather low field emission currents already visibly damaged the sensor surface, altering the system accuracy over the measurement time. Therefore, we coated the sensor surface with copper for protection. In contrast to the original insulating surface, the Cu coating provides a conductive surface for incident electrons and improves heat dissipation in addition. This prevents localized surface charges and surface damages which stabilize the system accuracy.}, language = {en} } @article{HausladenSchelsBuchneretal., author = {Hausladen, Matthias and Schels, Andreas and Buchner, Philipp and Bartl, Mathias and Asgharzade, Ali and Edler, Simon and Wohlfartsst{\"a}tter, Dominik and Bachmann, Michael and Schreiner, Rupert}, title = {Measurement of field emission array current distributions by metal-coated CMOS image sensors}, series = {Journal of Vacuum Science \& Technology B}, volume = {42}, journal = {Journal of Vacuum Science \& Technology B}, number = {6}, publisher = {AIP Publishing}, doi = {10.1116/6.0004074}, abstract = {A CMOS image sensor is utilized to determine the time- and spatially resolved distribution of the total electron emission current of a silicon field emission array. The sensor measures electron emission without the need for phosphorus screens or scintillators as converters. However, in initial experiments, rather low field emission currents of several hundreds of nanoamperes per emitter already damaged the sensor surface, which altered the systems' signal response over the measurement time. In consequence, we coated the CMOS sensor surface with a Cu layer for surface protection. In contrast to the original insulating surface, Cu is an excellent current- and heat-conductor, which avoids lens charging by providing a conductive path for incident electrons and has an improved heat dissipation capability. Measurements using a segmented field emission cathode with four individually addressable tips demonstrate a consistent correlation between the emission current and the sensor signal of the metal-coated image sensor. Furthermore, the characterization of a field emission array showed that single tip emission currents of up to 12 μA per tip are measurable without discernible damage effects of the sensor's surface.}, language = {en} } @article{HausladenSchelsAsgharzadeetal., author = {Hausladen, Matthias and Schels, Andreas and Asgharzade, Ali and Buchner, Philipp and Bartl, Mathias and Wohlfartsst{\"a}tter, Dominik and Edler, Simon and Bachmann, Michael and Schreiner, Rupert}, title = {Investigation of Influencing Factors on the Measurement Signal of a CMOS Image Sensor for Measuring Field Emission Currents}, series = {Sensors}, volume = {25}, journal = {Sensors}, number = {5}, publisher = {MDPI}, doi = {10.3390/s25051529}, pages = {17}, language = {en} }