@article{ZellnerHierlMuelleretal., author = {Zellner, Johannes and Hierl, Katja and Mueller, Michael and Pfeifer, Christian and Berner, Arne and Dienstknecht, Thomas and Krutsch, Werner and Geis, Sebastian and Gehmert, Sebastian and Kujat, Richard and Dendorfer, Sebastian and Prantl, Lukas and Nerlich, Michael and Angele, Peter}, title = {Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone}, series = {Journal of Biomedical Materials Research Part B Applied Biomaterials}, volume = {101}, journal = {Journal of Biomedical Materials Research Part B Applied Biomaterials}, number = {7}, editor = {Gilbert, Jeremy}, doi = {10.1002/jbm.b.32922}, pages = {1133 -- 1142}, abstract = {Meniscal tears in the avascular zone have a poor self-healing potential, however partial meniscectomy predisposes the knee for early osteoarthritis. Tissue engineering with mesenchymal stem cells and a hyaluronan collagen based scaffold is a promising approach to repair meniscal tears in the avascular zone. 4 mm longitudinal meniscal tears in the avascular zone of lateral menisci of New Zealand White Rabbits were performed. The defect was left empty, sutured with a 5-0 suture or filled with a hyaluronan/collagen composite matrix without cells, with platelet rich plasma or with autologous mesenchymal stem cells. Matrices with stem cells were in part precultured in chondrogenic medium for 14 days prior to the implantation. Menisci were harvested at 6 and 12 weeks. The developed repair tissue was analyzed macroscopically, histologically and biomechanically. Untreated defects, defects treated with suture alone, with cell-free or with platelet rich plasma seeded implants showed a muted fibrous healing response. The implantation of stem cell-matrix constructs initiated fibrocartilage-like repair tissue, with better integration and biomechanical properties in the precultured stem cell-matrix group. A hyaluronan-collagen based composite scaffold seeded with mesenchymal stem cells is more effective in the repair avascular meniscal tear with stable meniscus-like tissue and to restore the native meniscus.}, subject = {Meniskusschaden}, language = {en} } @article{AuerKurbowitschSuessetal., author = {Auer, Simon and Kurbowitsch, Simone and S{\"u}ß, Franz and Renkawitz, Tobias and Krutsch, Werner and Dendorfer, Sebastian}, title = {Mental stress reduces performance and changes musculoskeletal loading in football-related movements}, series = {Science and Medicine in Football}, volume = {5}, journal = {Science and Medicine in Football}, number = {4}, publisher = {Taylor \& Francis}, doi = {10.1080/24733938.2020.1860253}, pages = {323 -- 329}, abstract = {Purpose: Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Hence, this study investigated the musculoskeletal response of elite youth football players during highly dynamic movements under stress. The hypothesis is that mental stress reduces performance and changes the muscular forces exerted. Materials \& methods: Twelve elite youth football players were subjected to mental stress while performing sports-specific change-of-direction movements. A modified version of the d2 attention test was used as stressor. The kinetics are computed using inverse dynamics. Running times and exerted forces of injury-prone muscles were analysed. Results: The stressor runs were rated more mentally demanding by the players (p = 0.006, rs = 0.37) with unchanged physical demand (p = 0.777, rs = 0.45). This resulted in 10\% longer running times under stress (p < 0.001, d = -1.62). The musculoskeletal analysis revealed higher peak muscle forces under mental stress for some players but not for others. Discussion: The study shows that motion capture combined with musculoskeletal computation is suitable to analyse the effects of stress on athletes in highly dynamic movements. For the first time in football medicine, our data quantifies an association between mental stress with reduced football players' performance and changes in muscle force.}, language = {en} } @article{AuerKrutschRenkawitzetal., author = {Auer, Simon and Krutsch, Werner and Renkawitz, Tobias and Kubowitsch, Simone and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Kognitiver Stress f{\"u}hrt zu unphysiologisch erh{\"o}hten Kniebelastungen im Profifußball}, series = {Sports Orthopaedics and Traumatology}, volume = {36}, journal = {Sports Orthopaedics and Traumatology}, number = {2}, publisher = {Elsevier}, doi = {10.1016/j.orthtr.2020.04.122}, pages = {202 -- 203}, language = {de} }