@article{KrysztofMieraUrbańskietal., author = {Krysztof, Michał and Miera, Paweł and Urbański, Paweł and Grzebyk, Tomasz and Hausladen, Matthias and Schreiner, Rupert}, title = {Integrated silicon electron source for high vacuum microelectromechanical system devices}, series = {Journal of Vacuum Science \& Technology B}, volume = {42}, journal = {Journal of Vacuum Science \& Technology B}, number = {2}, publisher = {AIP Publishing}, issn = {2166-2746}, doi = {10.1116/6.0003385}, abstract = {The article presents the process of developing a silicon electron source designed for high-vacuum microelectromechanical system (HV MEMS) devices, i.e., MEMS electron microscope and MEMS x-ray source. Technological constraints and issues of such an electron source are explained. The transition from emitters made of carbon nanotubes to emitters made of pure silicon is described. Overall, the final electron source consists of a silicon tip emitter and a silicon gate electrode integrated on the same glass substrate. The source generates an electron beam without any carbon nanotube coverage. It generates a high and stable electron current and works after the final bonding process of an HV MEMS device.}, language = {en} } @inproceedings{KrysztofUrbańskiGrzebyketal., author = {Krysztof, Michał and Urbański, Paweł and Grzebyk, Tomasz and Hausladen, Matthias and Schreiner, Rupert}, title = {MEMS X-Ray Source: Electron Emitter Development}, series = {2022 21st International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS): 12-15 Dec. 2022, Salt Lake City, UT, USA}, booktitle = {2022 21st International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS): 12-15 Dec. 2022, Salt Lake City, UT, USA}, publisher = {IEEE}, doi = {10.1109/PowerMEMS56853.2022.10007563}, pages = {248 -- 251}, abstract = {The article presents a fabrication process and characterization of silicon emitters designed for MEMS X-ray source. The emitters, made of p-type and n-type silicon, were prepared by a modified laser micromachining process. Both types of emitters worked without any carbon nanotube coverage, which was the case in the previous realization of electron emitters. The p-type emitter gave smaller electron beam currents (<50 nA) with stable emission in a saturation region. The n-type emitter provides higher emission currents (>1 µA) not limited by saturation region, but with higher fluctuations. The final choice of emitter will be adjusted for different applications.}, language = {en} }