@article{GradNadammalSchultheissetal., author = {Grad, Marius and Nadammal, Naresh and Schultheiss, Ulrich and Lulla, Philipp and Noster, Ulf}, title = {An Integrative Experimental Approach to Design Optimization and Removal Strategies of Supporting Structures Used during L-PBF of SS316L Aortic Stents}, series = {Applied Sciences}, volume = {11}, journal = {Applied Sciences}, number = {19}, publisher = {MPDL}, doi = {10.3390/app11199176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-25612}, pages = {1 -- 22}, abstract = {One of the fundamental challenges in L-PBF of filigree geometries, such as aortic stents used in biomedical applications, is the requirement for a robust yet easily removable support structure that allows each component to be successfully fabricated without distortion. To solve this challenge, an integrative experimental approach was attempted in the present study by identifying an optimal support structure design and an optimized support removal strategy for this design. The specimens were manufactured using four different support structure designs based on the geometry exposed to the laser beam during the L-PBF. Support removal procedures included sand blasting (SB), glass bead blasting (GB), and electrochemical polishing (ECP). The two best-performing designs (line and cross) were chosen due to shorter lead times and lower material consumption. As an additional factor that indicates a stable design, the breaking load requirement to remove the support structures was determined. A modified line support with a 145° included angle was shown to be the best support structure design in terms of breaking load, material consumption, and manufacturing time. All three procedures were used to ensure residue-free support removal for this modified line support design, with ECP proving to be the most effective.}, language = {en} } @article{WiesentSchultheissLullaetal., author = {Wiesent, Lisa and Schultheiß, Ulrich and Lulla, Philipp and Nonn, Aida and Noster, Ulf}, title = {Mechanical properties of small structures built by selective laser melting 316 L stainless steel - a phenomenological approach to improve component design}, series = {Materials Science \& Engineering Technology}, volume = {51}, journal = {Materials Science \& Engineering Technology}, number = {12}, publisher = {Wiley}, doi = {10.1002/mawe.202000038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-14718}, pages = {1615 -- 1629}, abstract = {Experimental investigations are conducted to quantify the influence of specimen thickness and orientation on the mechanical properties of selective laser melted stainless steel 316 L. The results indicate that the mechanical strength and ductility increase with increasing specimen thickness until a saturation value is reached from a specimen thickness of about 2 mm. Specimen orientation dependency is pronounced for thin specimens (<1.5 mm), whereas only small deviations in strength are observed for thicker specimens with orientations of 30°, 45° and 90° to build direction. The mechanical properties of the specimen orientation of 0° to build direction shows great deviation to the other orientations and the smallest overall strength. A reliable design of selective laser melted components should account for specimen thickness and orientation, e. g. by a correction factor. Furthermore, it is recommended to avoid loads vertical (90°) and parallel (0°) to build direction to guarantee higher ductility and strength.}, language = {en} } @article{GradZentgrafSchultheissetal., author = {Grad, Marius and Zentgraf, Jan and Schultheiss, Ulrich and Esper, Lukas and Diemar, Andreas and Noster, Ulf and Spiess, Lothar}, title = {Effect of Carbon Content on the Phase Composition, Microstructure and Mechanical Properties of the TiC Layer Formed in Hot-Pressed Titanium-Steel Composites}, series = {Metals}, volume = {14}, journal = {Metals}, number = {9}, publisher = {MDPI AG}, issn = {2075-4701}, doi = {10.3390/met14090959}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-74617}, abstract = {During the hot pressing of pure titanium and different carbon steels in a temperature range of ϑ = 950-1050 °C, a compound layer up to dL≈10 μm thick is formed at the titanium-steel interface. With a higher carbon content of the used steel, the layer thickness increases. The carbon concentration within the layer is in the range of stoichiometry for TiC. Apart from TiC, no other phases can be detected by X-ray diffraction (XRD) measurements inside the formed layer. The calculation of the activation energy for the TiC layer formation is Q = 126.5-136.7 kJ mol-1 and is independent of the carbon content of the steel. The resulting microstructure has a grain size gradient, wherein the mechanical properties, such as hardness and Young's modulus, are almost constant. Statistical analysis using Response Surface Methodology (RSM) indicates that the carbon content of the steel has the most significant influence on layer thickness, followed by annealing temperature and annealing time. By selecting the appropriate carbon steel and the subsequent removal of the steel, it is possible to produce targeted TiC layers on titanium substrates, which holds enormous potential for this material in wear-intensive applications.}, language = {en} } @article{TezelSchultheissHornbergeretal., author = {Tezel, Tugce and Schultheiss, Ulrich and Hornberger, Helga and Kovan, Volkan}, title = {Operational wear behaviour of 3D-printed lightweight metal gears: EDS and oil analysis comparison}, series = {Materials Testing}, volume = {66}, journal = {Materials Testing}, number = {6}, publisher = {de Gruyter}, issn = {0025-5300}, doi = {10.1515/mt-2023-0222}, pages = {830 -- 834}, abstract = {Additive manufacturing (AM) has come to the fore in recent years among manufacturing techniques. This technique, which has different advantages than traditional ones such as casting, forging and machining, is expected to be widely used in producing machine parts like gears in the coming years. Therefore, experimental data on AM parameters for lightweight metal gears are important for industrial production. In this study, a wear test was applied to AlSi10Mg and Ti6Al4V gears under operational conditions, and the wear behaviour of conventionally and additively manufactured gears was compared. The amount of abrasion elements was determined by analysing the oil in the gearbox. In addition, gear surfaces were analysed using scanning electron microscopy and an energy-dispersive spectrometer before and after wear. Thus, the wear behaviour of gears produced by conventional and AM under service conditions was demonstrated comparatively.}, language = {en} } @article{KloiberAnetsbergerSchultheissetal., author = {Kloiber, Jessica and Anetsberger, Viktoria and Schultheiß, Ulrich and Hornberger, Helga}, title = {High quality surfaces of magnesium alloy AZ31 by adjusting appropriate electropolishing parameters}, series = {Electrochimica Acta}, volume = {513}, journal = {Electrochimica Acta}, publisher = {Elsevier}, doi = {10.1016/j.electacta.2024.145547}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-79298}, language = {en} } @article{KloiberSchultheissHornberger, author = {Kloiber, Jessica and Schultheiß, Ulrich and Hornberger, Helga}, title = {Impact of heat treatment on the surface quality of electropolished WE43 alloy}, series = {Materials Letters}, volume = {397}, journal = {Materials Letters}, publisher = {Elsevier BV}, issn = {0167-577X}, doi = {10.1016/j.matlet.2025.138821}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-83512}, pages = {5}, abstract = {In this study, the Mg alloy WE43 was solution annealed and precipitation hardened prior to electropolishing to evaluate the effects of different microstructures on the electropolishing result. While coarsely distributed precipitates led to surfaces showing wavy structures and dents after electropolishing, a uniform microstructure resulted in an even finish of the surface. The homogenization and refinement of the microstructure by heat treatment is a method to ensure improved electropolished surfaces of Mg materials}, language = {en} } @article{SchultheissHornberger, author = {Schultheiß, Ulrich and Hornberger, Helga}, title = {Comparison of etchants for corrosion-resistant stainless steels in medical engineering}, series = {Practical Metallography}, volume = {62}, journal = {Practical Metallography}, number = {1}, publisher = {de Gruyter}, doi = {10.1515/pm-2024-0094}, pages = {19 -- 30}, abstract = {Corrosion-resistant stainless steels are widely used in medical engineering. Today, additive manufacturing techniques are also used for this purpose, in particular for implant steels. Additively processed materials sometimes react differently to etching than conventionally processed ones. The use of etchants for contrasting the microstructure must therefore be adapted. Chemical etching using V2A etchant, Murakami, and anhydrous Kalling solutions, as well as electrochemical etching using nitric acid, sodium hydroxide, and oxalic acid were performed. Etched samples made of conventionally processed X2CrNi-Mo17-12-2 were compared to samples manufactured using selective laser melting and sintering, and the optimal contrast was developed in each case. It can be shown that the different etchants reveal different microstructural constituents and that etchants must therefore be selected as a function of the application.}, language = {en} } @unpublished{KloiberAnetsbergerSchultheissetal., author = {Kloiber, Jessica and Anetsberger, Viktoria and Schultheiss, Ulrich and Hornberger, Helga}, title = {Electropolishing of Magnesium Alloy Az31 with Varying Electrolyte Concentrations and Applied Potentials}, publisher = {SSRN}, doi = {10.2139/ssrn.4991311}, abstract = {Magnesium alloy AZ31 is a light material with a good mechanical stability and is used in various engineering applications. Although its tendency to localized corrosion is a limiting factor in its use. Electropolishing is a widely used process for improving the surface roughness and corrosion behavior of metals. However, there is a lack of knowledge about the electropolishing of magnesium and its alloys. In this study, an optimal electropolishing process for AZ31 was developed to improve the surface properties by varying the electrolyte concentration and the applied potential. The electrolyte composition was a mixture of phosphoric acid, ethanol and deionized water. The applied potentials were selected based on measured current density potential curves. Thereby, electropolishing was performed up to an electric charge of 18 As. The experimental results indicate that the electropolishing process should be carried out at a low current density to avoid bubble evolution and surface defects. Therefore, the concentration of the electropolishing electrolyte should have an appropriate low conductivity, and the applied potential should be in the transient or passive region of the polarization curve recorded prior to electropolishing. It could be shown that an optimized electropolishing process improved the surface of AZ31 by providing a bright and mirror-like surface and a lower roughness compared to a mechanically ground surface.}, language = {en} } @article{TezelSchultheissHornbergeretal., author = {Tezel, Tugce and Schultheiss, Ulrich and Hornberger, Helga and Kovan, Volkan}, title = {Operational wear behaviour of 3D-printed lightweight metal gears: EDS and oil analysis comparison}, series = {Materials Testing}, volume = {66}, journal = {Materials Testing}, number = {6}, publisher = {de Gruyter}, issn = {2195-8572}, doi = {10.1515/mt-2023-0222}, pages = {830 -- 834}, abstract = {Additive manufacturing (AM) has come to the fore in recent years among manufacturing techniques. This technique, which has different advantages than traditional ones such as casting, forging and machining, is expected to be widely used in producing machine parts like gears in the coming years. Therefore, experimental data on AM parameters for lightweight metal gears are important for industrial production. In this study, a wear test was applied to AlSi10Mg and Ti6Al4V gears under operational conditions, and the wear behaviour of conventionally and additively manufactured gears was compared. The amount of abrasion elements was determined by analysing the oil in the gearbox. In addition, gear surfaces were analysed using scanning electron microscopy and an energy-dispersive spectrometer before and after wear. Thus, the wear behaviour of gears produced by conventional and AM under service conditions was demonstrated comparatively.}, language = {en} } @article{WiesentSchultheissSchmidetal., author = {Wiesent, Lisa and Schultheiss, Ulrich and Schmid, Christof and Schratzenstaller, Thomas and Nonn, Aida}, title = {Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning}, series = {PlOS One}, volume = {14}, journal = {PlOS One}, number = {10}, publisher = {PLOS}, doi = {10.1371/journal.pone.0224026}, pages = {1 -- 25}, abstract = {In-stent restenosis remains a major problem of arteriosclerosis treatment by stenting. Expansion-optimized stents could reduce this problem. With numerical simulations, stent designs/ expansion behaviours can be effectively analyzed. For reasons of efficiency, simplified models of balloon-expandable stents are often used, but their accuracy must be challenged due to insufficient experimental validation. In this work, a realistic stent life-cycle simulation has been performed including balloon folding, stent crimping and free expansion of the balloon-stent-system. The successful simulation and validation of two stent designs with homogenous and heterogeneous stent stiffness and an asymmetrically positioned stent on the balloon catheter confirm the universal applicability of the simulation approach. Dogboning ratio, as well as the final dimensions of the folded balloon, the crimped and expanded stent, correspond well to the experimental dimensions with only slight deviations. In contrast to the detailed stent life-cycle simulation, a displacement-controlled simulation can not predict the transient stent expansion, but is suitable to reproduce the final expanded stent shape and the associated stress states. The detailed stent life-cycle simulation is thus essential for stent expansion analysis/optimization, whereas for reasons of computational efficiency, the displacement-controlled approach can be considered in the context of pure stress analysis.}, subject = {Stent}, language = {en} }