@article{TrostSternerBruckner, author = {Trost, Tobias and Sterner, Michael and Bruckner, Thomas}, title = {Impact of electric vehicles and synthetic gaseous fuels on final energy consumption and carbon dioxide emissions in Germany based on long-term vehicle fleet modelling}, series = {Energy}, volume = {141}, journal = {Energy}, publisher = {Elsevier}, issn = {0360-5442}, doi = {10.1016/j.energy.2017.10.006}, pages = {1215 -- 1225}, abstract = {Based on a prospective scenario analysis, possible vehicle fleet developments for the individual motor car traffic (vehicle categories N1 and M1) are investigated for Germany in order to determine the long-term vehicle fleet structure, final energy demand, and related carbon dioxide emissions until the year 2050. In this framework, a vehicle fleet model was developed which combines a bottom-up consumer demand model with a dynamic stock-flow approach. Special emphasis is thereby given to different electric power-trains and synthetic gaseous fuels based on the power-to-gas technology. In detail, two different main scenarios are developed and, in addition, the impact of different carbon dioxide taxation levels of fossil fuels on the vehicle fleet structure are analysed. The scenario results reveal a broad range of possible future vehicle fleet structures. In the short to medium timeframe, the internal combustion engine dominates the fleet as a result of efficiency improvements and an increased use of natural gas as automotive fuel. The development of electric power-trains is initially marked by hybrid vehicles, whereas battery electric vehicles dominate the fleet structure in the long-term. Under favourable conditions, also synthetic gaseous fuels are competitive which can reduce carbon dioxide emissions even further.}, language = {en} } @incollection{SternerEckertHenningetal., author = {Sterner, Michael and Eckert, Fabian and Henning, Hans-Martin and Trost, Tobias}, title = {Storage Demand in the Transport and Chemical Sector}, series = {Handbook of Energy Storage}, booktitle = {Handbook of Energy Storage}, editor = {Sterner, Michael and Stadler, Ingo}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-662-55503-3}, doi = {10.1007/978-3-662-55504-0_5}, pages = {165 -- 188}, abstract = {In the transport sector, energy transition is still in its beginnings: shares of renewable fuels are at 5\% and are, with the exception of a small percentage in electrical rail transport, almost entirely restricted to biofuel. The transport sector, i.e., road, air, shipping, and rail traffic, consumes around 30\% of all final energy in Germany and its dependency of over 90\% on petroleum is still very high. As a result, its shares in greenhouse gas emissions are at 20\%. The necessary structural change in mobility, based on energy transition, is closely linked to the question of operating energy and of energy storage also. Aside from vehicles directly powered by wind or solar energy, mobility without storage is not possible: fuel tanks in cars, gas stations, and airplanes are omnipresent. The focus of the considerations on storage demand in the transport sector is on the question of how these storages can be used with renewable energies via bio and synthetic fuels, and on the question of how much storage is necessary for these new drive technologies, such as e-mobility. Before this, mobility needs today and in future need to be examined. In the chemical sector, the situation is very much alike: there is a great dependency on fossil resources, and decarbonization is inevitable to achieve ambitious climate goals. The structural change to convert and store renewable electricity as primary energy via power-to-X (PtX) represents a storage demand. First estimates will conclude this chapter.}, language = {en} } @incollection{SternerStadlerEckertetal., author = {Sterner, Michael and Stadler, Ingo and Eckert, Fabian and Gerhardt, Norman and von Olshausen, Christian and Thema, Martin and Trost, Tobias}, title = {Storage Integration for Coupling Different Energy Sectors}, series = {Handbook of Energy Storage}, booktitle = {Handbook of Energy Storage}, editor = {Sterner, Michael and Stadler, Ingo}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-662-55503-3}, doi = {10.1007/978-3-662-55504-0_14}, pages = {757 -- 803}, abstract = {Electricity is becoming the primary source of energy, a trend that is particularly apparent through the coupling of the electricity sector with other energy sectors. In addition to the established links between the electricity and heating sectors using combined heat and power (CHP), which is supplemented by electric heat-pumps and power-to-heat (PtH), other new links are also emerging. These links are manifesting in the form of electro-mobility and electric fuels in the electricity and transport sectors; and in the electricity and gas sector they are appearing in the form of power-to-gas (PtG). The production of basic chemical materials such as methanol or polymers using electrical energy, water, and CO2 will also play a role in the future. However, the latter will not be dealt with explicitly here. Instead we will consider in detail other aspects of electricity as a primary energy source and its integration and application for energy storage.}, language = {en} } @incollection{JentschTrostSterner, author = {Jentsch, Mareike and Trost, Tobias and Sterner, Michael}, title = {Optimal Use of Power-to-Gas Energy Storage Systems in an 85\% Renewable Energy Scenario}, series = {Energy Procedia}, volume = {46}, booktitle = {Energy Procedia}, publisher = {Elsevier}, issn = {1876-6102}, doi = {10.1016/j.egypro.2014.01.180}, pages = {254 -- 261}, abstract = {In future energy systems with high shares of fluctuating renewable energy generation, electricity storage will become increasingly important for the utilization of surplus energy. The Power-to-Gas (PtG) technology is one promising option for solving the challenge of long-term electricity storage and is theoretically able to ease situations of grid congestion at the same time. This article presents the perspectives of PtG in an 85\% renewable energy scenario for Germany, quantifying an economic optimum for the PtG capacity as well as an optimized spatial PtG deployment.}, language = {en} } @incollection{SternerEckertHenningetal.2017, author = {Sterner, Michael and Eckert, Fabian and Henning, Hans-Martin and Trost, Tobias}, title = {Speicherbedarf im Verkehrs- und Chemiesektor}, series = {Energiespeicher - Bedarf, Technologien, Integration}, booktitle = {Energiespeicher - Bedarf, Technologien, Integration}, edition = {2. Auflage}, publisher = {Springer Vieweg}, address = {Berlin ; Heidelberg}, isbn = {978-3-662-48893-5}, doi = {10.1007/978-3-662-48893-5_5}, pages = {169 -- 192}, year = {2017}, subject = {Speicherbedarf}, language = {de} } @incollection{SternerStadlerEckertetal., author = {Sterner, Michael and Stadler, Ingo and Eckert, Fabian and Gerhardt, Norman and von Olshausen, Christian and Thema, Martin and Trost, Tobias}, title = {Speicherintegration zur Kopplung unterschiedlicher Energiesektoren}, series = {Energiespeicher - Bedarf, Technologien, Integration}, booktitle = {Energiespeicher - Bedarf, Technologien, Integration}, edition = {2. Auflage}, publisher = {Springer Vieweg}, address = {Berlin ; Heidelberg}, isbn = {978-3-662-48893-5}, doi = {10.1007/978-3-662-48893-5_14}, pages = {769 -- 818}, subject = {Energieversorgung}, language = {de} }