@misc{ScharfenbergMottokArtmannetal., author = {Scharfenberg, Georg and Mottok, J{\"u}rgen and Artmann, Christina and Hobelsberger, Martin and Paric, Ivan and Großmann, Benjamin and Pohlt, Clemens and Wackerbarth, Alena and Pausch, Uli and Heidrich, Christiane and Fadanelli, Martin and Elsner, Michael and P{\"o}cher, Daniel and Pittroff, Lenz and Beer, Stefan and Br{\"u}ckl, Oliver and Haslbeck, Matthias and Sterner, Michael and Thema, Martin and Muggenthaler, Nicole and Lenck, Thorsten and G{\"o}tz, Philipp and Eckert, Fabian and Deubzer, Michael and Stingl, Armin and Simsek, Erol and Kr{\"a}mer, Stefan and Großmann, Benjamin and Schlegl, Thomas and Niedersteiner, Sascha and Berlehner, Thomas and Joblin, Mitchell and Mauerer, Wolfgang and Apel, Sven and Siegmund, Janet and Riehle, Dirk and Weber, Joachim and Palm, Christoph and Zobel, Martin and Al-Falouji, Ghassan and Prestel, Dietmar and Scharfenberg, Georg and Mandl, Roland and Deinzer, Arnulf and Halang, W. and Margraf-Stiksrud, Jutta and Sick, Bernhard and Deinzer, Renate and Scherzinger, Stefanie and Klettke, Meike and St{\"o}rl, Uta and Wiech, Katharina and Kubata, Christoph and Sindersberger, Dirk and Monkman, Gareth J. and Dollinger, Markus and Dembianny, Sven and K{\"o}lbl, Andreas and Welker, Franz and Meier, Matthias and Thumann, Philipp and Swidergal, Krzysztof and Wagner, Marcus and Haug, Sonja and Vernim, Matthias and Seidenst{\"u}cker, Barbara and Weber, Karsten and Arsan, Christian and Schone, Reinhold and M{\"u}nder, Johannes and Schroll-Decker, Irmgard and Dillinger, Andrea Elisabeth and Fuchshofer, Rudolf and Monkman, Gareth J. and Shamonin (Chamonine), Mikhail and Geith, Markus A. and Koch, Fabian and {\"U}hlin, Christian and Schratzenstaller, Thomas and Saßmannshausen, Sean Patrick and Auchter, Eberhard and Kriz, Willy and Springer, Othmar and Thumann, Maria and Kusterle, Wolfgang and Obermeier, Andreas and Udalzow, Anton and Schmailzl, Anton and Hierl, Stefan and Langer, Christoph and Schreiner, Rupert}, title = {Forschungsbericht 2015}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-00-048589-3}, doi = {10.35096/othr/pub-1386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13867}, language = {de} } @misc{WeberDendorferSuessetal., author = {Weber, Karsten and Dendorfer, Sebastian and S{\"u}ß, Franz and Kubowitsch, Simone and Schratzenstaller, Thomas and Haug, Sonja and Mohr, Christa and Kiesl, Hans and Drechsler, J{\"o}rg and Westner, Markus and Kobus, J{\"o}rn and Schubert, Martin J. W. and Zenger, Stefan and Pietsch, Alexander and Weiß, Josef and Hinterseer, Sebastian and Schieck, Roland and Scherzinger, Stefanie and Klettke, Meike and Ringlstetter, Andreas and St{\"o}rl, Uta and Bissyand{\´e}, Tegawend{\´e} F. and Seeburger, Achim and Schindler, Timo and Ramsauer, Ralf and Kiszka, Jan and K{\"o}lbl, Andreas and Lohmann, Daniel and Mauerer, Wolfgang and Maier, Johannes and Scorna, Ulrike and Palm, Christoph and Soska, Alexander and Mottok, J{\"u}rgen and Ellermeier, Andreas and V{\"o}gele, Daniel and Hierl, Stefan and Briem, Ulrich and Buschmann, Knut and Ehrlich, Ingo and Pongratz, Christian and Pielmeier, Benjamin and Tyroller, Quirin and Monkman, Gareth J. and Gut, Franz and Roth, Carina and Hausler, Peter and Bierl, Rudolf and Prommesberger, Christian and Ławrowski, Robert Damian and Langer, Christoph and Schreiner, Rupert and Huang, Yifeng and She, Juncong and Ottl, Andreas and Rieger, Walter and Kraml, Agnes and Poxleitner, Thomas and Hofer, Simon and Heisterkamp, Benjamin and Lerch, Maximilian and Sammer, Nike and Golde, Olivia and Wellnitz, Felix and Schmid, Sandra and Muntschick, Claudia and Kusterle, Wolfgang and Paric, Ivan and Br{\"u}ckl, Oliver and Haslbeck, Matthias and Schmidt, Ottfried and Schwanzer, Peter and Rabl, Hans-Peter and Sterner, Michael and Bauer, Franz and Steinmann, Sven and Eckert, Fabian and Hofrichter, Andreas}, title = {Forschungsbericht 2017}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-9818209-3-5}, doi = {10.35096/othr/pub-1383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13835}, subject = {Forschung}, language = {de} } @article{KheiroddinSchoeberlAlthammeretal., author = {Kheiroddin, Parastoo and Sch{\"o}berl, Patricia and Althammer, Michael and Cibali, Ezgi and W{\"u}rfel, Thea and Wein, Hannah and Kulawik, Birgit and Buntrock-D{\"o}pke, Heike and Weigl, Eva and Gran, Silvia and Gr{\"u}ndl, Magdalena and Langguth, Jana and Lampl, Benedikt and Judex, Guido and Niggel, Jakob and Pagel, Philipp and Schratzenstaller, Thomas and Schneider-Brachert, Wulf and Gastiger, Susanne and Bodenschatz, Mona and Konrad, Maike and Levchuk, Artem and Roth, Cornelius and Sch{\"o}ner, David and Schneebauer, Florian and Rohrmanstorfer, Ren{\´e} and Burkovski, Andreas and Ambrosch, Andreas and Wagner, Thomas and Kabesch, Michael}, title = {Results of WICOVIR Gargle Pool PCR Testing in German Schools Based on the First 100,000 Tests}, series = {Frontiers in Pediatrics}, volume = {9}, journal = {Frontiers in Pediatrics}, editor = {Buonsenso, Danilo}, publisher = {frontiers}, issn = {2296-2360}, doi = {10.3389/fped.2021.721518}, abstract = {Background: Opening schools and keeping children safe from SARS-CoV-2 infections at the same time is urgently needed to protect children from direct and indirect consequences of the COVID-19 pandemic. To achieve this goal, a safe, efficient, and cost-effective SARS-CoV-2 testing system for schools in addition to standard hygiene measures is necessary. Methods: We implemented the screening WICOVIR concept for schools in the southeast of Germany, which is based on gargling at home, pooling of samples in schools, and assessment of SARS-CoV-2 by pool rRT-PCR, performed decentralized in numerous participating laboratories. Depooling was performed if pools were positive, and results were transmitted with software specifically developed for the project within a day. Here, we report the results after the first 13 weeks in the project. Findings: We developed and implemented the proof-of-concept test system within a pilot phase of 7 weeks based on almost 17,000 participants. After 6 weeks in the main phase of the project, we performed >100,000 tests in total, analyzed in 7,896 pools, identifying 19 cases in >100 participating schools. On average, positive children showed an individual CT value of 31 when identified in the pools. Up to 30 samples were pooled (mean 13) in general, based on school classes and attached school staff. All three participating laboratories detected positive samples reliably with their previously established rRT-PCR standard protocols. When self-administered antigen tests were performed concomitantly in positive cases, only one of these eight tests was positive, and when antigen tests performed after positive pool rRT-PCR results were already known were included, 3 out of 11 truly positive tests were also identified by antigen testing. After 3 weeks of repetitive WICOVIR testing twice weekly, the detection rate of positive children in that cohort decreased significantly from 0.042 to 0.012 (p = 0.008). Interpretation: Repeated gargle pool rRT-PCR testing can be implemented quickly in schools. It is an effective, valid, and well-received test system for schools, superior to antigen tests in sensitivity, acceptance, and costs.}, subject = {Covid-19}, language = {en} } @article{SchaefferHerrmannSchratzenstalleretal., author = {Schaeffer, Leon and Herrmann, David and Schratzenstaller, Thomas and Dendorfer, Sebastian and B{\"o}hm, Valter}, title = {Preliminary theoretical considerations on the stiffness characteristics of a tensegrity joint for the use in dynamic orthoses}, series = {Journal of Medical Robotics Research}, journal = {Journal of Medical Robotics Research}, publisher = {World Scientific}, doi = {10.1142/S2424905X23400081}, abstract = {Early motion therapy plays an important role for effective long-term healing of joint injuries. In many cases, conventional dynamic orthoses fail to address the intricate movement possibilities of the underlying joints, limited by their simplistic joint representations, often represented by revolute joints, enabling rotations by only one axis. In this paper, a two-dimensional compliant tensegrity joint for use in biomedical applications is investigated. It consists of two compressed members and five compliant tensioned members. Relative movement possibilities are realized by the intrinsic compliance of the structure. In the development of these systems, the first step is the determination of the static stable equilibrium. This analysis is conducted in this paper by considering the potential energy approach or by using the geometric nonlinear finite element method. The mechanical behavior of the structure is assessed with a specific emphasis on its mechanical compliance. The primary objective of this study is the investigation of the influence of structural parameters on the overall stiffness and movability of the structure. The results underscore the significant effect of member parameters on the stiffness and movability of the compliant tensegrity joint, particularly under varying load magnitudes. These findings provide insights for optimizing the joint's performance, contributing to its potential application in advanced orthotic and exoskeleton devices.}, language = {en} } @article{LooNagarajuPathivadaetal., author = {Loo, Xuyan and Nagaraju, Bhavana and Pathivada, Sai and Bartsch, Alexander and Schratzenstaller, Thomas and Sattler, Robert and Monkman, Gareth J.}, title = {Electrical properties of bisphenol-A-free magnetoactive borosilicate polymers}, series = {AIP Advances}, volume = {14}, journal = {AIP Advances}, number = {5}, publisher = {AIP Publishing}, issn = {2158-3226}, doi = {10.1063/5.0203017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-72936}, abstract = {The recent REACH regulations require the elimination of bisphenol-A and titanium dioxide from commercially available boron-based polymers. This has led to changes in some of the mechanical characteristics, which strongly influence the properties of magnetoactive borosilicate polymers. This work delivers results on the electrical properties and discusses some implications for future research using bisphenol-A and titanium-dioxide-free substitutes.}, language = {en} } @article{EigenbergerFelthausSchratzenstalleretal., author = {Eigenberger, Andreas and Felthaus, Oliver and Schratzenstaller, Thomas and Haerteis, Silke and Utpatel, Kirsten and Prantl, Lukas}, title = {The Effects of Shear Force-Based Processing of Lipoaspirates on White Adipose Tissue and the Differentiation Potential of Adipose Derived Stem Cells}, series = {cells}, volume = {11}, journal = {cells}, number = {16}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/cells11162543}, pages = {13}, abstract = {Autologous lipotransfer is a promising method for tissue regeneration, because white adipose tissue contains a heterogeneous cell population, including mesenchymal stem cells, endothelial cells, immune cells, and adipocytes. In order to improve the outcome, adipose tissue can be processed before application. In this study, we investigated changes caused by mechanical processing. Lipoaspirates were processed using sedimentation, first-time centrifugation, shear-force homogenization, and second-time centrifugation. The average adipocyte size, stromal vascular cell count, and adipocyte depot size were examined histologically at every processing step. In addition, the adipose derived stem cells (ADSCs) were isolated and differentiated osteogenically and adipogenically. While homogenization causes a disruption of adipocyte depots, the shape of the remaining adipocytes is not changed. On average, these adipocytes are smaller than the depot adipocytes, they are surrounded by the ECM, and therefore mechanically more stable. The volume loss of adipocyte depots leads to a significant enrichment of stromal vascular cells such as ADSCs. However, the mechanical processing does not change the potential of the ADSCs to differentiate adipogenically or steogenically. It thus appears that mechanically processed lipoaspirates are promising for the reparation of even mechanically stressed tissue as that found in nasolabial folds. The changes resulting from the processing correspond more to a filtration of mechanically less stable components than to a manipulation of the tissue.}, language = {en} } @article{ObermaierLehleSchmidetal., author = {Obermaier, Lisa and Lehle, Karla and Schmid, Stefanie and Schmid, Christof and Schratzenstaller, Thomas}, title = {Introduction of a new ex vivo porcine coronary artery model: Evaluation of the direct vascular injury after stent implantation with and without dogbone effect}, series = {European Surgical Research}, volume = {63}, journal = {European Surgical Research}, number = {4}, publisher = {Karger}, address = {Basel}, issn = {1421-9921}, doi = {10.1159/000527883}, pages = {285 -- 293}, abstract = {Introduction: Neointimal hyperplasia after percutaneous coronary intervention remains a major determinant of in-stent restenosis (ISR). The extent of mechanical vessel injury correlates with ISR. A new ex vivo porcine stent model was introduced and evaluated comparing different stent designs. Methods: Coronary arteries were prepared from pig hearts from the slaughterhouse and used for ex vivo implantations of coronary stents. One basic stent design in two configurations (dogbone, DB; non-dogbone, NDB) was used. Vascular injury was determined according to a modified injury score (IS). Results: Standardized experimental conditions ensured comparable vessel dimensions and overstretch data. DB stents caused more severe IS compared to NDB stents. The mean IS and the IS at the distal end of all stents were significantly reduced for NDB stents (ISMean, DB, 1.16 ±0.12; NDB, 1.02 ±0.12; p=0.018; ISDist, DB, 1.39 ±0.28; NDB, 1.13 ±0.24; p=0.03). Discussion/Conclusion: The introduced ex-vivo model allowed the evaluation of different stent designs exclude unfavorable stent designs.}, language = {en} } @article{GeithNothdurfterHeimletal., author = {Geith, Markus A. and Nothdurfter, Laurenz and Heiml, Manuel and Agrafiotis, Emmanouil and Gruber, Markus and Sommer, Gerhard and Schratzenstaller, Thomas and Holzapfel, Gerhard A.}, title = {Quantifying stent-induced damage in coronary arteries by investigating mechanical and structural alterations}, series = {Acta Biomaterialia}, volume = {116}, journal = {Acta Biomaterialia}, number = {October}, publisher = {Elsevier}, doi = {10.1016/j.actbio.2020.08.016}, pages = {285 -- 301}, abstract = {Vascular damage develops with diverging severity during and after percutaneous coronary intervention with stent placement and is the prevailing stimulus for in-stent restenosis. Previous work has failed to link mechanical data obtained in a realistic in vivo or in vitro environment with data collected during imaging processes. We investigated whether specimens of porcine right coronary arteries soften when indented with a stent strut shaped structure, and if the softening results from damage mechanisms inside the fibrillar collagen structure. To simulate the multiaxial loading scenario of a stented coronary artery, we developed the testing device 'LAESIO' that can measure differences in the stress-stretch behavior of the arterial wall before and after the indentation of a strut-like stamp. The testing protocol was optimized according to preliminary experiments, more specifically equilibrium and relaxation tests. After chemical fixation of the specimens and subsequent tissue clearing, we performed three-dimensional surface and second-harmonic generation scans on the deformed specimens. We analyzed and correlated the mechanical response with structural parameters of high-affected tissue located next to the stamp indentation and low-affected tissue beyond the injured area. The results reveal that damage mechanisms, like tissue compression as well as softening, fiber dispersion, and the lesion extent, are direction-dependent, and the severity of them is linked to the strut orientation, indentation pressure, and position. The findings highlight the need for further investigations by applying the proposed methods to human coronary arteries. Additional data and insights might help to incorporate the observed damage mechanisms into material models for finite element analyses to perform more accurate simulations of stent-implantations.}, language = {en} } @article{WiesentSchultheissSchmidetal., author = {Wiesent, Lisa and Schultheiss, Ulrich and Schmid, Christof and Schratzenstaller, Thomas and Nonn, Aida}, title = {Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning}, series = {PlOS One}, volume = {14}, journal = {PlOS One}, number = {10}, publisher = {PLOS}, doi = {10.1371/journal.pone.0224026}, pages = {1 -- 25}, abstract = {In-stent restenosis remains a major problem of arteriosclerosis treatment by stenting. Expansion-optimized stents could reduce this problem. With numerical simulations, stent designs/ expansion behaviours can be effectively analyzed. For reasons of efficiency, simplified models of balloon-expandable stents are often used, but their accuracy must be challenged due to insufficient experimental validation. In this work, a realistic stent life-cycle simulation has been performed including balloon folding, stent crimping and free expansion of the balloon-stent-system. The successful simulation and validation of two stent designs with homogenous and heterogeneous stent stiffness and an asymmetrically positioned stent on the balloon catheter confirm the universal applicability of the simulation approach. Dogboning ratio, as well as the final dimensions of the folded balloon, the crimped and expanded stent, correspond well to the experimental dimensions with only slight deviations. In contrast to the detailed stent life-cycle simulation, a displacement-controlled simulation can not predict the transient stent expansion, but is suitable to reproduce the final expanded stent shape and the associated stress states. The detailed stent life-cycle simulation is thus essential for stent expansion analysis/optimization, whereas for reasons of computational efficiency, the displacement-controlled approach can be considered in the context of pure stress analysis.}, subject = {Stent}, language = {en} } @article{GeithSwidergalHochholdingeretal., author = {Geith, Markus A. and Swidergal, Krzysztof and Hochholdinger, Bernd and Schratzenstaller, Thomas and Wagner, Marcus and Holzapfel, Gerhard A.}, title = {On the importance of modeling balloon folding, pleating, and stent crimping: An FE study comparing experimental inflation tests}, series = {International Journal for Numerical Methods in Biomedical Engineering}, volume = {35}, journal = {International Journal for Numerical Methods in Biomedical Engineering}, number = {11}, publisher = {Wiley}, doi = {10.1002/cnm.3249}, abstract = {Finite element (FE)-based studies of preoperative processes such as folding,pleating, and stent crimping with a comparison with experimental inflation tests are not yet available. Therefore, a novel workflow is presented in which residual stresses of balloon folding and pleating, as well as stent crimping, and the geometries of all contact partners were ultimately implemented in an FE code to simulate stent expansion by using an implicit solver. The numerical results demonstrate that the incorporation of residual stresses and strains experienced during the production step significantly increased the accuracy of the subsequent simulations, especially of the stent expansion model. During the preoperative processes, stresses inside the membrane and the stent material also reached a rather high level. Hence, there can be no presumption that balloon catheters or stents are undamaged before the actual surgery. The implementation of the realistic geometry, in particular the balloon tapers, and the blades of the process devices improved the simulation of the expansion mech-anisms, such as dogboning, concave bending, or overexpansion of stent cells. This study shows that implicit solvers are able to precisely simulate the mentioned preoperative processes and the stent expansion procedure without a preceding manipulation of the simulation time or physical mass.}, subject = {Stent}, language = {en} }