@misc{ScharfenbergMottokArtmannetal., author = {Scharfenberg, Georg and Mottok, J{\"u}rgen and Artmann, Christina and Hobelsberger, Martin and Paric, Ivan and Großmann, Benjamin and Pohlt, Clemens and Wackerbarth, Alena and Pausch, Uli and Heidrich, Christiane and Fadanelli, Martin and Elsner, Michael and P{\"o}cher, Daniel and Pittroff, Lenz and Beer, Stefan and Br{\"u}ckl, Oliver and Haslbeck, Matthias and Sterner, Michael and Thema, Martin and Muggenthaler, Nicole and Lenck, Thorsten and G{\"o}tz, Philipp and Eckert, Fabian and Deubzer, Michael and Stingl, Armin and Simsek, Erol and Kr{\"a}mer, Stefan and Großmann, Benjamin and Schlegl, Thomas and Niedersteiner, Sascha and Berlehner, Thomas and Joblin, Mitchell and Mauerer, Wolfgang and Apel, Sven and Siegmund, Janet and Riehle, Dirk and Weber, Joachim and Palm, Christoph and Zobel, Martin and Al-Falouji, Ghassan and Prestel, Dietmar and Scharfenberg, Georg and Mandl, Roland and Deinzer, Arnulf and Halang, W. and Margraf-Stiksrud, Jutta and Sick, Bernhard and Deinzer, Renate and Scherzinger, Stefanie and Klettke, Meike and St{\"o}rl, Uta and Wiech, Katharina and Kubata, Christoph and Sindersberger, Dirk and Monkman, Gareth J. and Dollinger, Markus and Dembianny, Sven and K{\"o}lbl, Andreas and Welker, Franz and Meier, Matthias and Thumann, Philipp and Swidergal, Krzysztof and Wagner, Marcus and Haug, Sonja and Vernim, Matthias and Seidenst{\"u}cker, Barbara and Weber, Karsten and Arsan, Christian and Schone, Reinhold and M{\"u}nder, Johannes and Schroll-Decker, Irmgard and Dillinger, Andrea Elisabeth and Fuchshofer, Rudolf and Monkman, Gareth J. and Shamonin (Chamonine), Mikhail and Geith, Markus A. and Koch, Fabian and {\"U}hlin, Christian and Schratzenstaller, Thomas and Saßmannshausen, Sean Patrick and Auchter, Eberhard and Kriz, Willy and Springer, Othmar and Thumann, Maria and Kusterle, Wolfgang and Obermeier, Andreas and Udalzow, Anton and Schmailzl, Anton and Hierl, Stefan and Langer, Christoph and Schreiner, Rupert}, title = {Forschungsbericht / Ostbayerische Technische Hochschule Regensburg}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-00-048589-3}, doi = {10.35096/othr/pub-1386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13867}, language = {de} } @article{ThemaThema, author = {Thema, Johannes and Thema, Martin}, title = {Nachnutzungskonzept: Braunkohle-Tagebaue als Pumpspeicherkraftwerk?}, series = {Energiewirtschaftliche Tagesfragen - et : Zeitschrift f{\"u}r Energiewirtschaft, Recht, Technik und Umwelt}, volume = {69}, journal = {Energiewirtschaftliche Tagesfragen - et : Zeitschrift f{\"u}r Energiewirtschaft, Recht, Technik und Umwelt}, number = {4}, publisher = {ETV Energieverl.}, address = {Essen}, pages = {38 -- 39}, abstract = {Der Anteil fluktuierender erneuerbarer Energien im deutschen Strommix steigt. Um die Netzstabilit{\"a}t zu erhalten, Fluktuationen im Dargebot nach Wetterlage und saisonal auszugleichen sind absehbar ab ca. 2030 große Stromspeicherkapazit{\"a}ten erforderlich. Wasser-Pumpspeicherwerke sind derzeit die einzige langj{\"a}hrig erprobte Technologie, die k{\"u}nftig in Braunkohletagebauen, welche im Zuge der Energiewende aufgegeben werden, errichtet werden k{\"o}nnten. Eine {\"U}berschlagsrechnung am Beispiel eines Pumpspeicherwerks in verschiedenen Tagebauen zeigt, dass diese mit bis zu 400 GWh ein signifikantes technisches Speicherpotenzial haben.}, language = {de} } @misc{AppelhansKampmannMottoketal., author = {Appelhans, Marie-Luise and Kampmann, Matthias and Mottok, J{\"u}rgen and Riederer, Michael and Nagl, Klaus and Steffens, Oliver and D{\"u}nnweber, Jan and Wildgruber, Markus and Roth, Julius and Stadler, Timo and Palm, Christoph and Weiß, Martin Georg and Rochholz, Sandra and Bierl, Rudolf and Gschossmann, Andreas and Haug, Sonja and Schmidbauer, Simon and Koch, Anna and Westner, Markus and Bary, Benedikt von and Ellermeier, Andreas and V{\"o}gele, Daniel and Maiwald, Frederik and Hierl, Stefan and Schlamp, Matthias and Ehrlich, Ingo and Siegl, Marco and H{\"u}ntelmann, Sven and Wildfeuer, Matthias and Br{\"u}ckl, Oliver and Sterner, Michael and Hofrichter, Andreas and Eckert, Fabian and Bauer, Franz and Dawoud, Belal and Rabl, Hans-Peter and Gamisch, Bernd and Schmidt, Ottfried and Heberl, Michael and Thema, Martin and Mayer, Ulrike and Eller, Johannes and Sippenauer, Thomas and Adelt, Christian and Haslbeck, Matthias and Vogl, Bettina and Mauerer, Wolfgang and Ramsauer, Ralf and Lohmann, Daniel and Sax, Irmengard and Gabor, Thomas and Feld, Sebastian and Linnhoff-Popien, Claudia and Ławrowski, Robert Damian and Langer, Christoph and Schreiner, Rupert and Sellmair, Josef}, title = {Forschung 2019}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-9818209-7-3}, doi = {10.35096/othr/pub-789}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-7890}, pages = {72}, abstract = {Bericht mit Forschungsprojekten aus verschiedenen Bereichen der OTH Regensburg mit dem Schwerpunktthema "K{\"u}nstliche Intelligenz" und einem Gespr{\"a}ch zur "Medizin der Zukunft"}, subject = {Forschung}, language = {de} } @incollection{SternerThema, author = {Sterner, Michael and Thema, Martin}, title = {Comparison of Storage Systems}, series = {Handbook of Energy Storage}, volume = {6}, booktitle = {Handbook of Energy Storage}, editor = {Sterner, Michael and Stadler, Ingo}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-662-55503-3}, doi = {10.1007/978-3-662-55504-0_12}, pages = {637 -- 672}, abstract = {There are several approaches to classifying energy storage systems (see Chaps. 1 and 2). Storage systems are used in a large number of different technologies at various stages of development, and in a wide range of application areas (see Chaps. 3 to 5). This chapter compares the capabilities of the different storage systems using the following criteria:This comparison of storage systems also provides a convenient overview of the various storage systems and their capabilities.}, language = {en} } @article{KaulBoellmannThemaetal., author = {Kaul, Anja and Boellmann, Andrea and Thema, Martin and Kalb, Larissa and Stoeckl, Richard and Huber, Harald and Sterner, Michael and Bellack, Annett}, title = {Combining a robust thermophilic methanogen and packing material with high liquid hold-up to optimize biological methanation in trickle-bed reactors}, series = {Bioresource technology}, volume = {345}, journal = {Bioresource technology}, publisher = {Elsevier}, doi = {10.1016/j.biortech.2021.126524}, abstract = {The hydrogen gas-to-liquid mass transfer is the limiting factor in biological methanation. In trickle-bed reactors, mass transfer can be increased by high flow velocities in the liquid phase, by adding a packing material with high liquid hold-up or by using methanogenic archaea with a high methane productivity. This study developed a polyphasic approach to address all methods at once. Various methanogenic strains and packings were investigated from a microbial and hydrodynamic perspective. Analyzing the ability to produce high-quality methane and to form biofilms, pure cultures of Methanothermobacter performed better than those of the genus Methanothermococcus. Liquid and static hold-up of a packing material and its capability to facilitate attachment was not attributable to a single property. Consequently, it is recommended to carefully match organism and packing for optimized performance of trickle-bed reactors. The ideal combination for the ORBIT system was identified as Methanothermobacter thermoautotrophicus IM5 and DuraTop (R).}, language = {en} } @techreport{SternerThemaEckertetal., author = {Sterner, Michael and Thema, Martin and Eckert, Fabian and Moser, Albert and Sch{\"a}fer, Andreas and Drees, Tim and Christian Rehtanz, and Ulf H{\"a}ger, and Kays, Jan and Seack, Andr{\´e} and Dirk Uwe Sauer, and Matthias Leuthold, and Philipp St{\"o}cker,}, title = {Stromspeicher in der Energiewende - Untersuchung zum Bedarf an neuen Stromspeichern in Deutschland f{\"u}r den Erzeugungsausgleich, Systemdienstleistungen und im Verteilnetz}, publisher = {Agora Energiewende}, address = {Berlin}, doi = {10.13140/RG.2.2.31804.56964}, abstract = {Wie groß ist der Speicherbedarf in Deutschland in der weiteren Umsetzung der Energiewende? Welche Rolle spielen Batteriespeicher, Pumpspeicher, Power-to-Gas etc. im Kontext anderer Flexibilit{\"a}tsoptionen auf den verschiedenen Netzebenen? Wie entwickelt sich der Markt f{\"u}r Batterien und Wasserstoff? In unserer Agora-Speicherstudie haben wir auch erstmalig den Begriff Power-to-X definiert und damit die bis dato entstandenen Begriffe Power-to-Gas, Power-to-Liquids, Power-to-Products, Power-to-Chemicals etc. zusammengefasst.}, language = {de} } @incollection{SternerBreuerDreesetal., author = {Sterner, Michael and Breuer, Christopher and Drees, Tim and Eckert, Fabian and Maaz, Andreas and Pape, Carsten and Rotering, Niklas and Thema, Martin}, title = {Storage Demand in Power Supply}, series = {Handbook of Energy Storage}, booktitle = {Handbook of Energy Storage}, editor = {Sterner, Michael and Stadler, Ingo}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-662-55503-3}, doi = {10.1007/978-3-662-55504-0_3}, pages = {51 -- 136}, abstract = {Energy storage systems (in the past as well as today) are one significant part in the energy supply. The following three chapters describe how storage demand will develop in the future for the electricity, heat, and traffic sectors, as well as for non-energetic consumption of fossil resources (the chemical industry). Chapter 3, the core of this section on storage demand, makes clear how and why the electricity sector is the nucleus of the energy supply of all sectors and why it creates essential bridges between electricity, heat, and transport sectors, as well as with the chemical industry. If planned electricity network expansion takes place and flexibilities in generation and consumption are fully exploited, the demand for electricity storage, according to present estimates, will only reach a significant scale at 60-80\% shares of renewable energy in the power supply. Network expansion has a great impact on the storage demand, as well as flexible power generation in power plants, combined heat and power (CHP), and flexible consumption via demand-side management (DSM). Four studies in the context of storage demand and the role of energy storage systems for flexibility are comprehensively addressed. The authors and the co-authors were themselves participants in these studies, which will be complemented by ongoing research. A meta-study summary of the main results is shown in Abschn. 3.7, and these results are compared with seven further studies.}, language = {en} } @incollection{SternerStadlerEckertetal., author = {Sterner, Michael and Stadler, Ingo and Eckert, Fabian and Gerhardt, Norman and von Olshausen, Christian and Thema, Martin and Trost, Tobias}, title = {Storage Integration for Coupling Different Energy Sectors}, series = {Handbook of Energy Storage}, booktitle = {Handbook of Energy Storage}, editor = {Sterner, Michael and Stadler, Ingo}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-662-55503-3}, doi = {10.1007/978-3-662-55504-0_14}, pages = {757 -- 803}, abstract = {Electricity is becoming the primary source of energy, a trend that is particularly apparent through the coupling of the electricity sector with other energy sectors. In addition to the established links between the electricity and heating sectors using combined heat and power (CHP), which is supplemented by electric heat-pumps and power-to-heat (PtH), other new links are also emerging. These links are manifesting in the form of electro-mobility and electric fuels in the electricity and transport sectors; and in the electricity and gas sector they are appearing in the form of power-to-gas (PtG). The production of basic chemical materials such as methanol or polymers using electrical energy, water, and CO2 will also play a role in the future. However, the latter will not be dealt with explicitly here. Instead we will consider in detail other aspects of electricity as a primary energy source and its integration and application for energy storage.}, language = {en} } @incollection{SternerStadlerEckertetal., author = {Sterner, Michael and Stadler, Ingo and Eckert, Fabian and Thema, Martin}, title = {Storage Integration in Individual Energy Sectors}, series = {Handbook of Energy Storage}, booktitle = {Handbook of Energy Storage}, editor = {Sterner, Michael and Stadler, Ingo}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-662-55503-3}, doi = {10.1007/978-3-662-55504-0_13}, pages = {675 -- 755}, abstract = {How is energy storage integrated and currently implemented in the electricity supply, heating supply, and mobility sectors? This chapter provides both theoretical and practical answers to that question. The chapter focuses on the integration of renewable energy. Cross-sectoral energy storage systems that link the electricity, heating, and mobility sectors are discussed in Kap. 14. This chapter focuses on storage integration in the electricity sector. After considering stand-alone networks, the chapter uses practical examples to analyze the various storage applications in the European network. The chapter concludes with a discussion of storage integration in the heating and transportation sectors.}, language = {en} } @unpublished{KaulBoellmannThemaetal., author = {Kaul, Anja and B{\"o}llmann, Andrea and Thema, Martin and Kalb, Larissa and St{\"o}ckl, Richard and Huber, Harald and Sterner, Michael and Bellack, Annett}, title = {Identification of Robust Thermophilic Methanogenic Archaea and Packing Material for High Liquid Hold-Up at Low Volumetric Gas Flow Rates for Use in Trickle-Bed Reactors for Biological Methanation}, series = {SSRN Electronic Journal}, journal = {SSRN Electronic Journal}, doi = {10.2139/ssrn.3940878}, abstract = {he hydrogen gas-to-liquid mass transfer is the limiting factor in biological methanation. In a trickle-bed reactor, mass transfer can be increased by high flow velocities in the liquid phase, by adding a packing material with high liquid hold-up, or by choosing methanogenic archaea with a high methane productivity. This study analyzed various packings and methanogenic strains from a hydrodynamic and microbial perspective. By analyzing twelve pure cultures of thermophilic methanogens for their ability to produce high quality methane and to form biofilms on different packings, strains of Methanothermobacter were found to perform better than thus of the genus Methanothermococcus. Best methane production and adherence was observed on DuraTop®, Bioflow 9, and filter foam. DuraTop® and Bioflow 9 had also a high dynamic liquid hold-up, but the maximum hold-up was determined for expanded clay. The ideal combination for use in the ORBIT-trickle-bed reactor was identified as Methanothermobacter thermoautotrophicus IM5 and DuraTop®.}, language = {en} } @incollection{SternerBauerCrotoginoetal., author = {Sterner, Michael and Bauer, Franz and Crotogino, Fritz and Eckert, Fabian and von Olshausen, Christian and Teichmann, Daniel and Thema, Martin}, title = {Chemical Energy Storage}, series = {Handbook of Energy Storage}, booktitle = {Handbook of Energy Storage}, editor = {Sterner, Michael and Stadler, Ingo}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-662-55503-3}, doi = {10.1007/978-3-662-55504-0_8}, pages = {325 -- 482}, abstract = {Purely electrical energy storage technologies are very efficient, however they are also very expensive and have the smallest capacities. Electrochemical-energy storage reaches higher capacities at smaller costs, but at the expense of efficiency. This pattern continues in a similar way for chemical-energy storage. In terms of capacities, the limits of batteries (accumulators) are reached when low-loss long-term storage is of need. Chemical-energy storage and stocking fulfills these requirements completely. The storing itself may be subject to significant efficiency losses, but, from today's point of view and in combination with the existing gas and fuel infrastructure, it is the only national option with regards to the long-term storage of renewable energies. Chemical-energy storage is the backbone of today's conventional energy supply. Solid (wood and coal), liquid (mineral oil), and gaseous (natural gas) energy carriers are 'energy storages' themselves, and are stored using different technologies. In the course of energy transition, chemical-energy storage will be of significant importance, mainly as long-term storage for the power sector, but also in the form of combustibles and fuels for transport and heat. Not only are conventional storing technologies discussed within this chapter, but a detailed explanation is also given about the storage of renewable energies in the form of gaseous (power-to-gas, PtG) and liquid (power-to-liquid, PtL) energy carriers for electricity, heat, chemicals, and in the form of synthetic fuels.}, language = {en} } @article{ThemaSternerLencketal., author = {Thema, Martin and Sterner, Michael and Lenck, Thorsten and G{\"o}tz, Philipp}, title = {Necessity and Impact of Power-to-gas on Energy Transition in Germany}, series = {Energy Procedia}, volume = {99}, journal = {Energy Procedia}, publisher = {Elsevier}, doi = {10.1016/j.egypro.2016.10.129}, pages = {392 -- 400}, abstract = {The present paper gives an outlook on a bandwidth of required installed power-to-gas capacity in the German power sector fed by 100\% renewable generation until 2050. Two scenarios were simulated to quantify cost effects of power-to-gas on the electricity system: once with, once without additional short-term flexibility options to a system using fossil natural gas as sole flexibility option instead. As a result, at latest in 2035, power-to-gas capacity expansion has to take place to reach required installed capacities of up to 89-134 GW in 2050. Application of power-to-gas as long-term flexibility leads to cost savings of up to 11,7-19 bn Euro enabling a fully renewable system in 2050.}, language = {en} } @misc{ThemaBellackWeidlichetal., author = {Thema, Martin and Bellack, Annett and Weidlich, Tobias and Huber, Harald and Karl, J{\"u}rgen and Sterner, Michael}, title = {Optimierung biologischer CO2-Methanisierung im Rieselbett-Reaktor}, series = {4. Regensburger Energiekongress, Regensburg 26.-27.02.2019}, journal = {4. Regensburger Energiekongress, Regensburg 26.-27.02.2019}, language = {de} } @misc{ThemaBauerSterner, author = {Thema, Martin and Bauer, Franz and Sterner, Michael}, title = {Power-to-Gas world status report}, series = {International Renewable Energy Storage Conference, D{\"u}sseldorf 14.-16.03.2019}, journal = {International Renewable Energy Storage Conference, D{\"u}sseldorf 14.-16.03.2019}, language = {de} } @inproceedings{ThemaBellackWeidlichetal., author = {Thema, Martin and Bellack, Annett and Weidlich, Tobias and Huber, Harald and Karl, J{\"u}rgen and Sterner, Michael}, title = {Optimizing biological CO2-methanation in a trickle-bed reactor}, series = {6th International Conference on Renewable Energy Gas Technology, 20-21 May 2019, Malm{\"o}, Sweden. Conference proceedings}, booktitle = {6th International Conference on Renewable Energy Gas Technology, 20-21 May 2019, Malm{\"o}, Sweden. Conference proceedings}, editor = {Held, J{\"o}rgen}, publisher = {Renewable Energy Technology International AB}, address = {Lund, Sweden}, pages = {93 -- 94}, language = {en} } @misc{SternerThema, author = {Sterner, Michael and Thema, Martin}, title = {Technologies status and perspectives of Power-to-Gas in connection with seasonal underground storage}, series = {European Workshop on Underground Energy Storage, Paris 07.11.2019}, journal = {European Workshop on Underground Energy Storage, Paris 07.11.2019}, language = {en} } @incollection{SternerBreuerDreesetal., author = {Sterner, Michael and Breuer, Christopher and Drees, Tim and Eckert, Fabian and Maaz, Andreas and Pape, Carsten and Rotering, Niklas and Thema, Martin}, title = {Speicherbedarf in der Stromversorgung}, series = {Energiespeicher - Bedarf, Technologien, Integration}, booktitle = {Energiespeicher - Bedarf, Technologien, Integration}, edition = {2. Auflage}, publisher = {Springer Vieweg}, address = {Berlin ; Heidelberg}, isbn = {978-3-662-48893-5}, doi = {10.1007/978-3-662-48893-5_3}, pages = {53 -- 140}, subject = {Speicherbedarf}, language = {de} } @article{ThemaWeidlichHoerletal., author = {Thema, Martin and Weidlich, Tobias and H{\"o}rl, Manuel and Bellack, Annett and M{\"o}rs, Friedemann and Hackl, Florian and Kohlmayer, Matthias and Gleich, Jasmin and Stabenau, Carsten and Trabold, Thomas and Neubert, Michael and Ortloff, Felix and Brotsack, Raimund and Schmack, Doris and Huber, Harald and Hafenbradl, Doris and Karl, J{\"u}rgen and Sterner, Michael}, title = {Biological CO2-Methanation: An Approach to Standardization}, series = {Energies}, volume = {12}, journal = {Energies}, number = {9}, publisher = {MDPI}, doi = {10.3390/en12091670}, pages = {1 -- 32}, abstract = {Power-to-Methane as one part of Power-to-Gas has been recognized globally as one of the key elements for the transition towards a sustainable energy system. While plants that produce methane catalytically have been in operation for a long time, biological methanation has just reached industrial pilot scale and near-term commercial application. The growing importance of the biological method is reflected by an increasing number of scientific articles describing novel approaches to improve this technology. However, these studies are difficult to compare because they lack a coherent nomenclature. In this article, we present a comprehensive set of parameters allowing the characterization and comparison of various biological methanation processes. To identify relevant parameters needed for a proper description of this technology, we summarized existing literature and defined system boundaries for Power-to-Methane process steps. On this basis, we derive system parameters providing information on the methanation system, its performance, the biology and cost aspects. As a result, three different standards are provided as a blueprint matrix for use in academia and industry applicable to both, biological and catalytic methanation. Hence, this review attempts to set the standards for a comprehensive description of biological and chemical methanation processes.}, language = {en} } @incollection{SternerThema, author = {Sterner, Michael and Thema, Martin}, title = {Vergleich der Speichersysteme}, series = {Energiespeicher - Bedarf, Technologien, Integration}, booktitle = {Energiespeicher - Bedarf, Technologien, Integration}, edition = {2. Auflage}, publisher = {Springer Vieweg}, address = {Berlin ; Heidelberg}, isbn = {978-3-662-48893-5}, doi = {10.1007/978-3-662-48893-5_12}, pages = {645 -- 682}, subject = {Energiespeicher}, language = {de} } @incollection{SternerStadlerEckertetal., author = {Sterner, Michael and Stadler, Ingo and Eckert, Fabian and Gerhardt, Norman and von Olshausen, Christian and Thema, Martin and Trost, Tobias}, title = {Speicherintegration zur Kopplung unterschiedlicher Energiesektoren}, series = {Energiespeicher - Bedarf, Technologien, Integration}, booktitle = {Energiespeicher - Bedarf, Technologien, Integration}, edition = {2. Auflage}, publisher = {Springer Vieweg}, address = {Berlin ; Heidelberg}, isbn = {978-3-662-48893-5}, doi = {10.1007/978-3-662-48893-5_14}, pages = {769 -- 818}, subject = {Energieversorgung}, language = {de} } @incollection{SternerBauerCrotoginoetal., author = {Sterner, Michael and Bauer, Franz and Crotogino, Fritz and Eckert, Fabian and von Olshausen, Christian and Teichmann, Daniel and Thema, Martin}, title = {Chemische Energiespeicher}, series = {Energiespeicher - Bedarf, Technologien, Integration}, booktitle = {Energiespeicher - Bedarf, Technologien, Integration}, edition = {2. Auflage}, publisher = {Springer Vieweg}, address = {Berlin ; Heidelberg}, isbn = {978-3-662-48893-5}, doi = {10.1007/978-3-662-48893-5_8}, pages = {327 -- 493}, subject = {Energiespeicher}, language = {de} } @incollection{SternerStadlerEckertetal., author = {Sterner, Michael and Stadler, Ingo and Eckert, Fabian and Thema, Martin}, title = {Speicherintegration in einzelnen Energiesektoren}, series = {Energiespeicher - Bedarf, Technologien, Integration}, booktitle = {Energiespeicher - Bedarf, Technologien, Integration}, edition = {2. Auflage}, publisher = {Springer Vieweg}, address = {Berlin ; Heidelberg}, isbn = {978-3-662-48893-5}, doi = {10.1007/978-3-662-48893-5_13}, pages = {685 -- 767}, subject = {Energiespeicher}, language = {de} } @techreport{ThemaKaulSterneretal., author = {Thema, Martin and Kaul, Anja and Sterner, Michael and Heberl, Michael}, title = {Optimierung eines Rieselbett-Bioreaktors f{\"u}r die dynamische mikrobielle Biosynthese von Methan mit Archaeen-Mikroorganismen in Power-to-Gas-Anlagen}, doi = {10.2314/KXP:1815321555}, abstract = {Das {\"u}bergeordnete Ziel des Vorhabens war die Entwicklung neuer technologischer M{\"o}glichkeiten f{\"u}r den biologischen Methanisierungsprozess mit Archaeen1 in Power-to-Gas-Anwendungen. Im Gegensatz zur technisch ausgereiften chemisch-katalytischen Methanisierung sind hier noch Potenziale zur Optimierung verfahrenstechnischer und biologischer Prozesse f{\"u}r das Speicherkonzept Power-to-Gas [7] vorhanden. Dabei sollte zum einen ein Rieselbett-Bioreaktor optimiert, simuliert und f{\"u}r die Hochskalierung vorbereitet werden. Zum anderen sollte eine Kombination optimal geeigneter Mikroorganismen und Packungsmaterialien selektiert und deren Verhalten und Eignung im Reaktor analysiert werden. Das Verhalten des entwickelten Systems sollte zun{\"a}chst im Labor- und Technikumsmaßstab und anschließend im Feldtest an einer bestehenden Power-to-Gas-Anlage untersucht werden. Hauptziel w{\"a}hrend des Feldtests war die Produktion von einspeisef{\"a}higem Methan sowie dessen Einspeisung ins Gasnetz. Ein Hauptziel des Projektes war es, die Normung und Standardisierung notwendiger Systemparameter und Semantik zur Beschreibung und Einbindung biologischer Methanisierungseinheiten in Power-to-Gas-Anlagen voranzutreiben. Dies sollte zum einen die Vergleichbarkeit der wissenschaftlichen Erkenntnisse verbessern und zum anderen unterst{\"u}tzend bei der Kommerzialisierung der Technologie wirken. Aus dem Projekt heraus wurde so die neue Normungsreihe VDI 4635 Power-to-X beim Verein Deutscher Ingenieure angestoßen.}, language = {de} } @article{ThemaWeidlichKauletal., author = {Thema, Martin and Weidlich, Tobias and Kaul, Anja and B{\"o}llmann, Andrea and Huber, Harald and Bellack, Annett and Karl, J{\"u}rgen and Sterner, Michael}, title = {Optimized biological CO2-methanation with a pure culture of thermophilic methanogenic archaea in a trickle-bed reactor}, series = {Bioresource Technology}, journal = {Bioresource Technology}, number = {333}, publisher = {Elsevier}, doi = {10.1016/j.biortech.2021.125135}, abstract = {In this study, a fully automated process converting hydrogen and carbon dioxide to methane in a high temperature trickle-bed reactor was developed from lab scale to field test level. The reactor design and system performance was optimized to yield high methane content in the product gas for direct feed-in to the gas grid. The reaction was catalyzed by a pure culture of Methanothermobacter thermoautotrophicus IM5, which formed a biofilm on ceramic packing elements. During 600 h in continuous and semi-continuous operation in countercurrent flow, the 0.05 m3 reactor produced up to 95.3 \% of methane at a methane production rate of 0.35 mCH43mR-3h-1. Adding nitrogen as carrier gas during startup, foam control and dosing of ammonium and sodium sulfide as nitrogen and sulfur source were important factors for process automation.}, language = {en} } @article{ThemaBauerSterner, author = {Thema, Martin and Bauer, Franz and Sterner, Michael}, title = {Power-to-Gas: Electrolysis and methanation status review}, series = {Renewable and Sustainable Energy Reviews}, volume = {112}, journal = {Renewable and Sustainable Energy Reviews}, number = {7}, publisher = {Elsevier}, doi = {10.1016/j.rser.2019.06.030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-26238}, pages = {775 -- 787}, abstract = {This review gives a worldwide overview on Power-to-Gas projects producing hydrogen or renewable substitute natural gas focusing projects in central Europe. It deepens and completes the content of previous reviews by including hitherto unreviewed projects and by combining project names with details such as plant location. It is based on data from 153 completed, recent and planned projects since 1988 which were evaluated with regards to plant allocation, installed power development, plant size, shares and amounts of hydrogen or substitute natural gas producing examinations and product utilization phases. Cost development for electrolysis and carbon dioxide methanation was analyzed and a projection until 2030 is given with an outlook to 2050. The results show substantial cost reductions for electrolysis as well as for methanation during the recent years and a further price decline to less than 500 euro per kilowatt electric power input for both technologies until 2050 is estimated if cost projection follows the current trend. Most of the projects examined are located in Germany, Denmark, the United States of America and Canada. Following an exponential global trend to increase installed power, today's Power-to-Gas applications are operated at about 39 megawatt. Hydrogen and substitute natural gas were investigated on equal terms concerning the number of projects.}, language = {en} }