@article{ZimmermannChavezBeckeretal., author = {Zimmermann, Klaus and Chavez, Jhohan and Becker, Tatiana I. and Witte, Hartmut and Schilling, Cornelius and K{\"o}hring, Sebastian and B{\"o}hm, Valter and Monkman, Gareth J. and Prem, Nina and Sindersberger, Dirk and Lutz, I. I. and Merker, L.}, title = {An approach to a form-adaptive compliant gripper element based on magneto-sensitive elastomers with a bioinspired sensorized surface}, series = {Problems of Mechanics}, volume = {75}, journal = {Problems of Mechanics}, number = {2}, publisher = {Georgian Technical University}, address = {Tbilisi}, issn = {1512-0740}, pages = {23 -- 38}, language = {en} } @article{BeckerBoehmChavezetal., author = {Becker, Tatiana I. and B{\"o}hm, Valter and Chavez, Jhohan and Odenbach, Stefan and Raikher, Yuriy L. and Zimmermann, Klaus}, title = {Magnetic-field-controlled mechanical behavior of magneto-sensitive elastomers in applications for actuator and sensor systems}, series = {Archive of Applied Mechanics}, volume = {89}, journal = {Archive of Applied Mechanics}, number = {1}, publisher = {Springer Nature}, doi = {10.1007/s00419-018-1477-4}, pages = {133 -- 152}, abstract = {The development of actuator and sensor systems with complex adaptive behavior and operating sensitivity is one of the actual scientific challenges. Smart materials like magneto-sensitive elastomers (MSEs) offer great potential for designing such intelligent devices, because they possess unique magnetic-field-dependent properties. The present paper deals with investigations of the free and forced vibrational behavior displayed by cantilever beams of MSEs containing magnetically soft particles in a uniform magnetic field. It is shown experimentally as well as theoretically that the first bending eigenfrequency of MSE beams depends strongly on the strength of an applied magnetic field. The proposed magneto-mechanical model is based on the vibrational dynamics of thin rods and predicts reliably the amplitude-frequency characteristics depending on the geometric configuration of the MSE and its material parameters. It is found that the vibration response of an MSE beam under kinematic excitation of its base can be modified indirectly by a magnetic field control due to the change of the vibration characteristics. As a result, the resonance can occur in different ranges of the excitation frequency. The dependencies of the amplification ratio on the excitation frequency are obtained experimentally and compared with the result provided by the theoretical model. Moreover, investigations on the potential use of the field-induced plasticity effect of MSEs in form-fit gripper applications are presented. This effect can be used to realize shape adaptable system parts. It is found that the mechanical properties of each component and its concentration within the mixture have an impact on the mechanical behavior of the whole MSE compound. Such parameters as the strength of magnetic field and geometry of the MSE sample have influence on the quality of shape adaptation. The evidence presented provides a good basis for the realization of MSE-based actuator and sensor systems with adaptable sensitivity.}, language = {en} } @article{BeckerBoehmSchaleetal., author = {Becker, Tatiana I. and B{\"o}hm, Valter and Schale, F. and Zimmermann, Klaus}, title = {Vibrating sensor unit made of a magnetoactive elastomer with field-adjustable characteristics}, series = {Journal of Magnetism and Magnetic Materials}, volume = {498}, journal = {Journal of Magnetism and Magnetic Materials}, number = {March}, publisher = {Elsevier}, doi = {10.1016/j.jmmm.2019.166196}, abstract = {The present work deals with the investigation of the oscillatory behavior displayed by a vibrating sensor unit made of a magnetoactive elastomer (MAE). Since this type of smart materials consists of an elastic matrix and micro-magnetic particles, it reveals exceptional magnetic-field-dependent material properties. The forced vibration response under the bending of the MAE unit subjected to in-plane harmonic kinematic excitation of the housing is studied. It is found that the amplitude-frequency characteristics of the MAE unit can be changed considerably by means of an external homogeneous magnetic field. With and without applied field, the unit displays different steady-state responses for the same excitation, and the resonance occurs at various ranges of the excitation frequency. The nonlinear phenomenon of the resonance hysteresis is observed depending on whether the excitation frequency increases or decreases. It is shown that the MAE vibrations can be detected based on the magnetic field distortion measurements. The presented prototype of the MAE-based vibrating unit with field-adjustable "configuration" can be potentially implemented for realization of acceleration sensor systems with adaptive sensitivity.}, language = {en} } @misc{ChavezBoehmScharffetal., author = {Chavez, Jhohan and B{\"o}hm, Valter and Scharff, M. and Prem, Nina and Monkman, Gareth J. and Becker, Tatiana I. and G{\"u}nther, L. and Alencastre, Jorge H. and Grieseler, R. and Zimmermann, Klaus}, title = {Magneto-active elastomer as viscoelastic foundation material for artificial tactile sensors with tuneable properties}, series = {Book of Abstracts of the 16th German Ferrofluid Workshop, Braunschweig, 18.-20.07.2018}, journal = {Book of Abstracts of the 16th German Ferrofluid Workshop, Braunschweig, 18.-20.07.2018}, pages = {16 -- 17}, language = {en} } @misc{ChavezBoehmYinetal., author = {Chavez, Jhohan and B{\"o}hm, Valter and Yin, J. and Becker, Tatiana I. and K{\"o}hring, S. and Monkman, Gareth J. and Odenbach, S. and Zimmermann, Klaus}, title = {Field induced plasticity of magneto-sensitive elastomers for gripping technology applications}, series = {6th Colloquium of SPP 1681, Benediktbeuern, 26. - 28.09.2018 : Book of Abstracts}, journal = {6th Colloquium of SPP 1681, Benediktbeuern, 26. - 28.09.2018 : Book of Abstracts}, pages = {16 -- 17}, language = {en} } @incollection{ChavezBoehmBeckeretal., author = {Chavez, Jhohan and B{\"o}hm, Valter and Becker, Tatiana I. and Gast, Simon and Zeidis, Igor and Zimmermann, Klaus}, title = {Actuators based on a controlled particlematrix interaction in magnetic hybrid materials for applications in locomotion and manipulation systems}, series = {Magnetic Hybrid-Materials: Multi-scale modelling synthesis and applications}, booktitle = {Magnetic Hybrid-Materials: Multi-scale modelling synthesis and applications}, editor = {Odenbach, Stefan}, publisher = {De Gruyter}, address = {Berlin}, isbn = {9783110569636}, doi = {10.1515/9783110569636-027}, pages = {653 -- 680}, abstract = {The paper deals with the investigation of magneto-sensitive elastomers(MSE) and their application in technical actuator systems. MSE consist of an elasticmatrix containing suspended magnetically soft and/or hard particles. Additionally,they can also contain silicone oil, graphite particles, thermoplastic components, etc.,in various concentrations in order to tune specific properties such as viscosity, con-ductivity and thermoelasticity, respectively. The focuses of investigations are thebeneficial properties of MSE in prototypes for locomotion and manipulation purposesthat possess an integrated sensor function. The research follows the principle of amodel-based design, i.e. the working steps are ideation, mathematical modelling,material characterization as well as building first functional models (prototypes). Thedeveloped apedal (without legs) and non-wheeled locomotion systems use the inter-play between material deformations and the mechanical motion in connection with theissues of control and stability. Non-linear friction phenomena lead to a monotonousforward motion of the systems. The aim of this study is the design of such mechanicalstructures, which reduce the control costs. The investigations deal with the movementand control of'intelligent'mechanisms, for which the magnetically field-controlledparticle-matrix interactions provide an appropriate approach. The presented grippersenclose partially gripped objects, which is an advantage for handling sensitive objects.Form-fit grippers with adaptable contour at the contact area enable a uniform pressuredistribution on the surface of gripped objects. Furthermore, with the possibility ofactive shape adaptation, objects with significantly differing geometries can be gripped.To realise the desired active shape adaptation, the effect of field-induced plasticity ofMSE is used. The first developed prototypes mainly confirm the functional principles assuch without direct application. For this, besides the ability of locomotion andmanipulation itself, further technological possibilities have to be added to the systems.}, language = {en} } @article{ChavezBoehmBeckeretal., author = {Chavez, Jhohan and B{\"o}hm, Valter and Becker, Tatiana I. and Gast, Simon and Zeidis, Igor and Zimmermann, Klaus}, title = {Actuators based on a controlled particle-matrix interaction in magnetic hybrid materials for applications in locomotion and manipulation systems}, series = {Physical Sciences Reviews}, volume = {7}, journal = {Physical Sciences Reviews}, number = {11}, publisher = {de Gruyter}, doi = {10.1515/psr-2019-0087}, pages = {1263 -- 1290}, abstract = {The paper deals with the investigation of magneto-sensitive elastomers (MSE) and their application in technical actuator systems. MSE consist of an elastic matrix containing suspended magnetically soft and/or hard particles. Additionally, they can also contain silicone oil, graphite particles, thermoplastic components, etc., in various concentrations in order to tune specific properties such as viscosity, conductivity and thermoelasticity, respectively. The focuses of investigations are the beneficial properties of MSE in prototypes for locomotion and manipulation purposes that possess an integrated sensor function. The research follows the principle of a model-based design, i.e. the working steps are ideation, mathematical modelling, material characterization as well as building first functional models (prototypes). The developed apedal (without legs) and non-wheeled locomotion systems use the interplay between material deformations and the mechanical motion in connection with the issues of control and stability. Non-linear friction phenomena lead to a monotonous forward motion of the systems. The aim of this study is the design of such mechanical structures, which reduce the control costs. The investigations deal with the movement and control of 'intelligent' mechanisms, for which the magnetically field-controlled particle-matrix interactions provide an appropriate approach. The presented grippers enclose partially gripped objects, which is an advantage for handling sensitive objects. Form-fit grippers with adaptable contour at the contact area enable a uniform pressure distribution on the surface of gripped objects. Furthermore, with the possibility of active shape adaptation, objects with significantly differing geometries can be gripped. To realise the desired active shape adaptation, the effect of field-induced plasticity of MSE is used. The first developed prototypes mainly confirm the functional principles as such without direct application. For this, besides the ability of locomotion and manipulation itself, further technological possibilities have to be added to the systems. The first steps are therefore being taken towards integrated MSE based adaptive sensor systems.}, language = {en} } @article{BeckerRaikherStolbovetal., author = {Becker, Tatiana I. and Raikher, Yuriy L. and Stolbov, Oleg V. and B{\"o}hm, Valter and Zimmermann, Klaus}, title = {Magnetoactive elastomers for magnetically tunable vibrating sensor systems}, series = {Physical Sciences Reviews}, volume = {7}, journal = {Physical Sciences Reviews}, number = {10}, publisher = {de Gruyter}, issn = {2365-659X}, doi = {10.1515/psr-2019-0125}, pages = {1 -- 28}, abstract = {Magnetoactive elastomers (MAEs) are a special type of smart materials consisting of an elastic matrix with embedded microsized particles that are made of ferromagnetic materials with high or low coercivity. Due to their composition, such elastomers possess unique magnetic field-dependent material properties. The present paper compiles the results of investigations on MAEs towards an approach of their potential application as vibrating sensor elements with adaptable sensitivity. Starting with the model-based and experimental studies of the free vibrational behavior displayed by cantilevers made of MAEs, it is shown that the first bending eigenfrequency of the cantilevers depends strongly on the strength of an applied uniform magnetic field. The investigations of the forced vibration response of MAE beams subjected to in-plane kinematic excitation confirm the possibility of active magnetic control of the amplitude-frequency characteristics. With change of the uniform field strength, the MAE beam reveals different steady-state responses for the same excitation, and the resonance may occur at various ranges of the excitation frequency. Nonlinear dependencies of the amplification ratio on the excitation frequency are obtained for different magnitudes of the applied field. Furthermore, it is shown that the steady-state vibrations of MAE beams can be detected based on the magnetic field distortion. The field difference, which is measured simultaneously on the sides of a vibrating MAE beam, provides a signal with the same frequency as the excitation and an amplitude proportional to the amplitude of resulting vibrations. The presented prototype of the MAE-based vibrating unit with the field-controlled "configuration" can be implemented for realization of acceleration sensor systems with adaptable sensitivity. The ongoing research on MAEs is oriented to the use of other geometrical forms along with beams, e.g. two-dimensional structures such as membranes.}, language = {de} }