@inproceedings{FranzKatzkyNeumannetal., author = {Franz, Daniela and Katzky, Uwe and Neumann, S. and Perret, Jerome and Hofer, Mathias and Huber, Michaela and Schmitt-R{\"u}th, Stephanie and Haug, Sonja and Weber, Karsten and Prinzen, Martin and Palm, Christoph and Wittenberg, Thomas}, title = {Haptisches Lernen f{\"u}r Cochlea Implantationen}, series = {15. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer- und Roboterassistierte Chirurgie (CURAC2016), Tagungsband, 2016, Bern, 29.09. - 01.10.}, booktitle = {15. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer- und Roboterassistierte Chirurgie (CURAC2016), Tagungsband, 2016, Bern, 29.09. - 01.10.}, pages = {21 -- 26}, abstract = {Die Implantation eines Cochlea Implantates ben{\"o}tigt einen chirurgischen Zugang im Felsenbein und durch die Paukenh{\"o}hle des Patienten. Der Chirurg hat eine eingeschr{\"a}nkte Sicht im Operationsgebiet, die weiterhin viele Risikostrukturen enth{\"a}lt. Um eine Cochlea Implantation sicher und fehlerfrei durchzuf{\"u}hren, ist eine umfangreiche theoretische und praktische (teilweise berufsbegleitende) Fortbildung sowie langj{\"a}hrige Erfahrung notwendig. Unter Nutzung von realen klinischen CT/MRT Daten von Innen- und Mittelohr und der interaktiven Segmentierung der darin abgebildeten Strukturen (Nerven, Cochlea, Geh{\"o}rkn{\"o}chelchen,...) wird im HaptiVisT Projekt ein haptisch-visuelles Trainingssystem f{\"u}r die Implantation von Innen- und Mittelohr-Implantaten realisiert, das als sog. „Serious Game" mit immersiver Didaktik gestaltet wird. Die Evaluierung des Demonstrators hinsichtlich Zweckm{\"a}ßigkeit erfolgt prozessbegleitend und ergebnisorientiert, um m{\"o}gliche technische oder didaktische Fehler vor Fertigstellung des Systems aufzudecken. Drei zeitlich versetzte Evaluationen fokussieren dabei chirurgisch-fachliche, didaktische sowie haptisch-ergonomische Akzeptanzkriterien.}, subject = {Cochlea-Implantat}, language = {de} } @article{MaierPerretSimonetal., author = {Maier, Johannes and Perret, Jerome and Simon, Martina and Schmitt-R{\"u}th, Stephanie and Wittenberg, Thomas and Palm, Christoph}, title = {Force-feedback assisted and virtual fixtures based K-wire drilling simulation}, series = {Computers in Biology and Medicine}, volume = {114}, journal = {Computers in Biology and Medicine}, publisher = {Elsevier}, doi = {10.1016/j.compbiomed.2019.103473}, pages = {1 -- 10}, abstract = {One common method to fix fractures of the human hand after an accident is an osteosynthesis with Kirschner wires (K-wires) to stabilize the bone fragments. The insertion of K-wires is a delicate minimally invasive surgery, because surgeons operate almost without a sight. Since realistic training methods are time consuming, costly and insufficient, a virtual-reality (VR) based training system for the placement of K-wires was developed. As part of this, the current work deals with the real-time bone drilling simulation using a haptic force-feedback device. To simulate the drilling, we introduce a virtual fixture based force-feedback drilling approach. By decomposition of the drilling task into individual phases, each phase can be handled individually to perfectly control the drilling procedure. We report about the related finite state machine (FSM), describe the haptic feedback of each state and explain, how to avoid jerking of the haptic force-feedback during state transition. The usage of the virtual fixture approach results in a good haptic performance and a stable drilling behavior. This was confirmed by 26 expert surgeons, who evaluated the virtual drilling on the simulator and rated it as very realistic. To make the system even more convincing, we determined real drilling feed rates through experimental pig bone drilling and transferred them to our system. Due to a constant simulation thread we can guarantee a precise drilling motion. Virtual fixtures based force-feedback calculation is able to simulate force-feedback assisted bone drilling with high quality and, thus, will have a great potential in developing medical applications.}, subject = {Handchirurgie}, language = {en} } @inproceedings{EixelbergerWittenbergPerretetal., author = {Eixelberger, Thomas and Wittenberg, Thomas and Perret, Jerome and Katzky, Uwe and Simon, Martina and Schmitt-R{\"u}th, Stephanie and Hofer, Mathias and Sorge, M. and Jacob, R. and Engel, Felix B. and Gostian, A. and Palm, Christoph and Franz, Daniela}, title = {A haptic model for virtual petrosal bone milling}, series = {17. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer- und Roboterassistierte Chirurgie (CURAC2018), Tagungsband, 2018, Leipzig, 13.-15. September}, volume = {17}, booktitle = {17. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer- und Roboterassistierte Chirurgie (CURAC2018), Tagungsband, 2018, Leipzig, 13.-15. September}, pages = {214 -- 219}, abstract = {Virtual training of bone milling requires realtime and realistic haptics of the interaction between the "virtual mill" and a "virtual bone". We propose an exponential abrasion model between a virtual one and the mill bit and combine it with a coarse representation of the virtual bone and the mill shaft for collision detection using the Bullet Physics Engine. We compare our exponential abrasion model to a widely used linear abrasion model and evaluate it quantitatively and qualitatively. The evaluation results show, that we can provide virtual milling in real-time, with an abrasion behavior similar to that proposed in the literature and with a realistic feeling of five different surgeons.}, subject = {Osteosynthese}, language = {en} }