@book{FreniDawoudBonaccorsietal., author = {Freni, Angelo and Dawoud, Belal and Bonaccorsi, Lucio Maria and Chmielewski, Stefanie and Frazzica, Andrea and Calabrese, Luigi and Restuccia, Giovanni}, title = {Characterization of Zeolite-Based Coatings for Adsorption Heat Pumps}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-319-09327-7}, pages = {96 S.}, abstract = {This book proposes a radically new approach for characterizing thermophysical and mechanical properties of zeolite-based adsorbent coatings for Adsorptive Heat Transformers (AHT). It presents a developed standard protocol for the complete characterization of advanced coated adsorbers. Providing an in-depth analysis of the different procedures necessary for evaluating the performance of adsorbers, it also presents an analysis of their stability under the hydrothermal and mechanical stresses during their entire life cycle. Adsorptive Heat Transformers (AHT), especially adsorption chillers and heat pumps, are considered to be promising technologies to increase thermal energy efficiency. Nevertheless, an overall increase in performance of this apparatus is necessary for them to be considered a mature technology to be used commercially. Development of innovative coated adsorbers can be perceived as a key issue for the enhancement of AHT technology. This procedure relies on the deposition, either by means of a binder or by direct crystallization, of the adsorbent material over a metallic heat exchanger, aiming at the improvement of the heat transfer between the external heat source and the adsorbent itself. This book offers a valuable resource to those working on the development of novel adsorbent materials and advanced adsorbent beds for heating and cooling applications. It is also intended for researchers interested in renewable energy and energy efficiency.}, language = {en} } @article{FreniFrazzicaDawoudetal., author = {Freni, Angelo and Frazzica, Andrea and Dawoud, Belal and Chmielewski, Stefanie and Calabrese, Luigi and Bonaccorsi, Lucio Maria}, title = {Adsorbent coatings for heat pumping applications: Verification of hydrothermal and mechanical stabilities}, series = {Applied Thermal Engineering}, volume = {50}, journal = {Applied Thermal Engineering}, number = {2}, publisher = {Elsevier}, doi = {10.1016/j.applthermaleng.2011.07.010}, pages = {1658 -- 1663}, abstract = {This paper presents novel experimental methods for verification of both hydrothermal and mechanical stabilities of adsorbent coatings. Experiments have been carried out on zeolite-based coatings over aluminum substrates, prepared by a dip-coating technique developed at CNR-ITAE. Hydrothermal aging of several adsorbent coatings is ongoing. Adsorption and structural stability of some samples under test was successfully verified after 35000 aging cycles by isobars measurement and XRD analysis. Mechanical properties of coatings have been evaluated by applying different typologies of static and dynamic mechanical stresses. Results obtained have been compared with those achieved by subjecting adsorbent coatings prepared by Mitsubishi Plastic Incorporation (MPI) to the same characterization protocol. The comparison between the two types of coating returned that MPI coatings posses similar thermal stability and better mechanical strength than CNR-ITAE coatings.}, language = {en} }