@misc{ScharfenbergMottokArtmannetal., author = {Scharfenberg, Georg and Mottok, J{\"u}rgen and Artmann, Christina and Hobelsberger, Martin and Paric, Ivan and Großmann, Benjamin and Pohlt, Clemens and Wackerbarth, Alena and Pausch, Uli and Heidrich, Christiane and Fadanelli, Martin and Elsner, Michael and P{\"o}cher, Daniel and Pittroff, Lenz and Beer, Stefan and Br{\"u}ckl, Oliver and Haslbeck, Matthias and Sterner, Michael and Thema, Martin and Muggenthaler, Nicole and Lenck, Thorsten and G{\"o}tz, Philipp and Eckert, Fabian and Deubzer, Michael and Stingl, Armin and Simsek, Erol and Kr{\"a}mer, Stefan and Großmann, Benjamin and Schlegl, Thomas and Niedersteiner, Sascha and Berlehner, Thomas and Joblin, Mitchell and Mauerer, Wolfgang and Apel, Sven and Siegmund, Janet and Riehle, Dirk and Weber, Joachim and Palm, Christoph and Zobel, Martin and Al-Falouji, Ghassan and Prestel, Dietmar and Scharfenberg, Georg and Mandl, Roland and Deinzer, Arnulf and Halang, W. and Margraf-Stiksrud, Jutta and Sick, Bernhard and Deinzer, Renate and Scherzinger, Stefanie and Klettke, Meike and St{\"o}rl, Uta and Wiech, Katharina and Kubata, Christoph and Sindersberger, Dirk and Monkman, Gareth J. and Dollinger, Markus and Dembianny, Sven and K{\"o}lbl, Andreas and Welker, Franz and Meier, Matthias and Thumann, Philipp and Swidergal, Krzysztof and Wagner, Marcus and Haug, Sonja and Vernim, Matthias and Seidenst{\"u}cker, Barbara and Weber, Karsten and Arsan, Christian and Schone, Reinhold and M{\"u}nder, Johannes and Schroll-Decker, Irmgard and Dillinger, Andrea Elisabeth and Fuchshofer, Rudolf and Monkman, Gareth J. and Shamonin (Chamonine), Mikhail and Geith, Markus A. and Koch, Fabian and {\"U}hlin, Christian and Schratzenstaller, Thomas and Saßmannshausen, Sean Patrick and Auchter, Eberhard and Kriz, Willy and Springer, Othmar and Thumann, Maria and Kusterle, Wolfgang and Obermeier, Andreas and Udalzow, Anton and Schmailzl, Anton and Hierl, Stefan and Langer, Christoph and Schreiner, Rupert}, title = {Forschungsbericht / Ostbayerische Technische Hochschule Regensburg}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-00-048589-3}, doi = {10.35096/othr/pub-1386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13867}, language = {de} } @misc{Kraemer, author = {Kr{\"a}mer, Stefan}, title = {Effects of Arbitrary Hardware Faults on Multicore Scheduling in Safety-critical Applications - Evaluation by enhanced Markov models and discrete event simulation}, series = {2014 PESW - The 2nd Prague Embedded Systems Workshop, June 2014}, journal = {2014 PESW - The 2nd Prague Embedded Systems Workshop, June 2014}, language = {en} } @article{SellmerStanglBeyeretal., author = {Sellmer, Andreas and Stangl, Hubert and Beyer, Mandy and Gr{\"u}nstein, Elisabeth and Leonhardt, Michel and Pongratz, Herwig and Eichhorn, Emerich and Elz, Sigurd and Striegl, Birgit and Jenei-Lanzl, Zsuzsa and Dove, Stefan and Straub, Rainer H. and Kr{\"a}mer, Oliver H. and Mahboobi, Siavosh}, title = {Marbostat-100 Defines a New Class of Potent and Selective Antiinflammatory and Antirheumatic Histone Deacetylase 6 Inhibitors}, series = {Journal of medicinal chemistry}, volume = {61}, journal = {Journal of medicinal chemistry}, number = {8}, publisher = {ACS Publications}, doi = {10.1021/acs.jmedchem.7b01593}, pages = {3454 -- 3477}, abstract = {Epigenetic modifiers of the histone deacetylase (HDAC) family contribute to autoimmunity, cancer, HIV infection, inflammation, and neurodegeneration. Hence, histone deacetylase inhibitors (HDACi), which alter protein acetylation, gene expression patterns, and cell fate decisions, represent promising new drugs for the therapy of these diseases. Whereas pan-HDACi inhibit all 11 Zn2+-dependent histone deacetylases (HDACs) and cause a broad spectrum of side effects, specific inhibitors of histone deacetylase 6 (HDAC6i) are supposed to have less side effects. We present the synthesis and biological evaluation of Marbostats, novel HDAC6i that contain the hydroxamic acid moiety linked to tetrahydro-β-carboline derivatives. Our lead compound Marbostat-100 is a more potent and more selective HDAC6i than previously established well-characterized compounds in vitro as well as in cells. Moreover, Marbostat-100 is well tolerated by mice and effective against collagen type II induced arthritis. Thus, Marbostat-100 represents a most selective known HDAC6i and the possibility for clinical evaluation of a HDAC isoform-specific drug.}, language = {en} } @inproceedings{HerboldReindlMeieretal., author = {Herbold, Florian and Reindl, Andrea and Meier, Hans and Niemetz, Michael and Kr{\"a}mer, Stefan}, title = {Secure Software Updates: Challenges and Solutions for Embedded IoT Systems}, series = {Proceedings of the 9th Embedded Systems Workshop: July 1-3, 2021 Horomerice, Czech Republic}, booktitle = {Proceedings of the 9th Embedded Systems Workshop: July 1-3, 2021 Horomerice, Czech Republic}, editor = {Kub{\´a}tov{\´a}, Hana and Fišer, Petr and Boreck{\´y}, Jaroslav}, isbn = {978-80-01-06858-8}, pages = {5 -- 13}, abstract = {The invention of the internet made the development of intelligent networking of millions of embedded systems possible. This enabled smart buildings, power grids and cities as well as applications in the fields of health, agriculture and industry. These systems frequently perform safety-critical applications and operations. This makes it urgent to protect these sensible systems as effectively as possible. Especially firmware updates are often the weak point in the systems. If unauthorised persons gain access to the system during the update, malware can be injected or sensitive data can be read and stolen. This paper describes the challenges of secure firmware updates. To protect an embedded system from potential attackers, the concepts integrity, authenticity and confidentiality have to be adhered during the update process. Otherwise, there is an increased risk of modifying or reverse engineering the firmware image. Likewise, inadequately protected software can enable the installation of third-party firmware as well as the installation of firmware on a third-party system. Threat prevention is presented with solutions derived from functional safety and IT security. Aspects of protection against errors in the transmission of updates and against attacks aiming to compromise the system are explained. Finally, a possible sequence of a secure update process is examined in detail for a real embedded system implementation. For this purpose, the preparation, transmission and installation of a firmware update in the bootloader are discussed}, language = {en} } @inproceedings{RaabKraemerMottoketal., author = {Raab, Peter and Kr{\"a}mer, Stefan and Mottok, J{\"u}rgen and Meier, Hans and Racek, Stanislav}, title = {Safe software processing by concurrent execution in a real-time operating system}, series = {16th International Conference on Applied Electronics (AE 2011), 2011, Pilsen, Czech Republic}, booktitle = {16th International Conference on Applied Electronics (AE 2011), 2011, Pilsen, Czech Republic}, pages = {315 -- 319}, abstract = {The requirements for safety-related software systems increases rapidly. To detect arbitrary hardware faults, there are applicable coding mechanism, that add redundancy to the software. In this way it is possible to replace conventional multi-channel hardware and so reduce costs. Arithmetic codes are one possibility of coded processing and are used in this approach. A further approach to increase fault tolerance is the multiple execution of certain critical parts of software. This kind of time redundancy is easily realized by the parallel processing in an operating system. Faults in the program flow can be monitored. No special compilers, that insert additional generated code into the existing program, are required. The usage of multi-core processors would further increase the performance of such multi-channel software systems. In this paper we present the approach of program flow monitoring combined with coded processing, which is encapsulated in a library of coded data types. The program flow monitoring is indirectly realized by means of an operating system.}, language = {en} } @inproceedings{MuchaMottokKraemer, author = {Mucha, Matthias and Mottok, J{\"u}rgen and Kr{\"a}mer, Stefan}, title = {Estimation of Worst Case Response Time Boundaries in Multi-Core Real-Time Systems}, series = {2017 International Conference on Applied Electronics (AE), 5-6 Sept. 2017, Pilsen}, booktitle = {2017 International Conference on Applied Electronics (AE), 5-6 Sept. 2017, Pilsen}, publisher = {IEEE}, isbn = {978-80-261-0641-8}, issn = {1803-7232}, doi = {10.23919/ae.2017.8053598}, pages = {1 -- 6}, abstract = {We address a novel probabilistic approach to estimate the Worst Case Response Time boundaries of tasks. Multi-core real-time systems process tasks in parallel on two or more cores. Tasks in our contribution may preempt other tasks, block tasks with semaphores to access global shared resources, or migrate to another core. The depicted task behavior is random. The shape of collected response times of a task within a processing time is multimodal. Extreme Value approaches need unimodal response time distributions to estimate the Worst Case Response Time of tasks. The new proposed method derives a set of three task set shapes from the source task set. It is used to minimize the uncertainty of random task behavior by maximizing the coverage of possible Worst Case Response Times. The case study evaluates the new proposed estimation method by the use of dynamically generated random tasks with varying task properties.}, language = {en} } @inproceedings{KraemerMottokMeier, author = {Kr{\"a}mer, Stefan and Mottok, J{\"u}rgen and Meier, Hans}, title = {Modifikation des Taskzustandsmodells des LLREF-Schedulers auf einem Dual-Core-Prozess}, series = {Proceedings of the 2nd Embedded Software Engineering Congress, 8. bis 10. Dezember 2009, Sindelfingen}, booktitle = {Proceedings of the 2nd Embedded Software Engineering Congress, 8. bis 10. Dezember 2009, Sindelfingen}, pages = {628 -- 636}, language = {de} } @inproceedings{KraemerRaabMottoketal., author = {Kr{\"a}mer, Stefan and Raab, Peter and Mottok, J{\"u}rgen and Racek, Stanislav}, title = {Comparison of Enhanced Markov Models and Discrete Event Simulation}, series = {17th Euromicro Conference on Digital System Design (DSD), 27-29 August 2014, Verona, Italy}, booktitle = {17th Euromicro Conference on Digital System Design (DSD), 27-29 August 2014, Verona, Italy}, doi = {10.1109/DSD.2014.42}, pages = {591 -- 598}, abstract = {In this paper we present simulation and model based approaches for evaluating and validating the temporal and safety relevant properties of software intensive safety-critical real-time embedded systems. A high level reliability model of a safe task execution is described by a continuous-time Markov process, enhanced by the modeling of execution times. It is shown that the behavior - regarding real-time and safety metrics - of this theoretical model can be transferred into an abstract system timing model, which then can be analyzed by a discrete event simulation approach. The verification of the discrete event simulation by Markov models offers the possibility of a holistic approach for reliability analysis combined with schedulability analysis of complex safety-critical multicore real-time systems by the discrete event simulation.}, language = {en} } @inproceedings{MottokKraemerDeubzeretal., author = {Mottok, J{\"u}rgen and Kr{\"a}mer, Stefan and Deubzer, Michael and Hobelsberger, Martin and Martin, Felix}, title = {Hardware Based Tracing of Embedded Multi-Core Systems}, series = {4th Applied Research Conference, 5th July 2014, Ingolstadt}, booktitle = {4th Applied Research Conference, 5th July 2014, Ingolstadt}, isbn = {978-3-8440-2875-1}, language = {en} } @inproceedings{RaabKraemerMottok, author = {Raab, Peter and Kr{\"a}mer, Stefan and Mottok, J{\"u}rgen}, title = {Error Model and the Reliability of Arithmetic Operations}, series = {2013 IEEE EUROCON - International Conference on Computer as a Tool, Zagreb, Croatia, July 1-4, 2013}, booktitle = {2013 IEEE EUROCON - International Conference on Computer as a Tool, Zagreb, Croatia, July 1-4, 2013}, doi = {10.1109/EUROCON.2013.6625047}, pages = {630 -- 637}, abstract = {Error detecting and correcting codes are widely used in data transmission, storage systems and also for data processing. In logical circuits like arithmetic operations, arbitrary faults can cause errors in the result. However in safety critical applications, it is important to avoid those errors which would lead to system failures. Several approaches are known to protect the result of operations during software processing. In the same way like transmission systems, coded processing uses codes for fault detection. But in contrast to transmission systems, there is no adequate channel model available which makes it possible to evaluate the residue error probability of an arithmetic operation in an analytical way. This paper tries to close the gap of arithmetic error models by the development of a model for an ordinary addition in a computer system. Thus, the reliability of an addition's result can be analytically evaluated.}, language = {en} }