@article{KrieglKovalevShamoninChamonineetal., author = {Kriegl, Raphael and Kovalev, Alexander and Shamonin (Chamonine), Mikhail and Gorb, Stanislav}, title = {Tunable contact angle hysteresis on compliant magnetoactive elastomers}, series = {Extreme Mechanics Letters}, volume = {63}, journal = {Extreme Mechanics Letters}, publisher = {Elsevier}, issn = {2352-4316}, doi = {10.1016/j.eml.2023.102049}, abstract = {It is shown that the advancing (ACA) and receding (RCA) contact angles of water on extremely soft (shear modulus of the order of 10 kPa) magnetoactive elastomer (MAE) films significantly depend on the applied magnetic field. The difference between these angles, known as the contact angle hysteresis, is examined. The roles of the filler concentration and material softness are elaborated. The highest change in the contact angle hysteresis (CAH) from 34° in the absence of magnetic field to 76° in a magnetic field of 0.4 T is achieved for the softest sample with the lowest mass fraction of iron particles (70 wt\%). The dependence of the CAH on magnetization history ("magnetic hysteresis") is observed. This magnetic hysteresis is clearly pronounced for the ACA and has little effect on the RCA. Magnetic field-induced changes of the surface roughness exhibit qualitatively the same hysteresis behavior with regard to the external magnetic field as the ACA. The results are promising for the development of smart surfaces for applications where the dynamic wetting has to be controlled.}, language = {en} } @article{KovalevBelyaevavonHofenetal., author = {Kovalev, Alexander and Belyaeva, Inna A. and von Hofen, Christian and Gorb, Stanislav and Shamonin (Chamonine), Mikhail}, title = {Magnetically Switchable Adhesion and Friction of Soft Magnetoactive Elastomers}, series = {Advanced Engineering Materials}, volume = {24}, journal = {Advanced Engineering Materials}, number = {10}, publisher = {WILEY-VCH}, doi = {10.1002/adem.202200372}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-45283}, pages = {1 -- 8}, abstract = {Herein, the effect of an applied moderate (~240 mT) magnetic field on the work of adhesion (WoA) of mechanically soft (the shear modulus ~10 kPa) magnetoactive elastomer (MAE) samples with two different mass fractions (70 and 80 wt\%) of carbonyl iron powder (CIP) is concerned. The unfilled elastomer sample is used for comparison. Due to some sedimentation of filling particles, the concentration of inclusions in thin (~10 μm) subsurface layers is different. It is shown that the WoA increases (up to 1.8-fold) on the particle-enriched side (PES) in the magnetic field and its value is higher for higher filler concentration. On the particle-depleted side (PDS), WoA does not depend on particle concentration and on the magnetic field. Adhesion and friction are coupled in MAEs. No statistically significant difference in the friction coefficient, determined from the extended Amontons´ law, depending on sample side, CIP concentration, or presence of magnetic field is found. However, the PDS in the magnetic field demonstrates significantly higher critical shear stress compared to that for the PES or PDS in the absence of magnetic field. Correlations between different surface properties are discussed. Obtained results are useful for the development of magnetically controllable soft robots.}, language = {en} }