@misc{RueckBierlLechneretal., author = {R{\"u}ck, Thomas and Bierl, Rudolf and Lechner, Alfred and Graf, Antonia and Dams, Florian and Schreiner, Rupert and Auchter, Eberhard and Kriz, Willy and Deubzer, MIchael and Schiller, Frank and Mottok, J{\"u}rgen and Niemetz, Michael and Margull, Ulrich and Hagel, Georg and Utesch, Matthias and Waldherr, Franz and B{\"o}hm, Matthias and Fraunhoffer, Judith and Gardeia, Armin and Schneider, Ralph and Streubel, Janet and Landes, Dieter and Studt, Reimer and Peuker, Dominik and Scharfenberg, Georg and Hook, Christian and Schuster, Dietwald and Ehrlich, Ingo and Dinnebier, Heinrich and Briem, Ulrich and L{\"a}mmlein, Stephan and Koder, Alexander and Bialek, Adam and Genewsky, Axel and Neumeier, Michael and Schlosser, Philipp and Rabl, Hans-Peter and Paule, Matthias and Galster, Christoph and Schiedermeier, Michael and Zwickel, Andreas and Hobmeier, Christoph and Bischoff, Tobias and Rill, Georg and Schaeffer, Thomas and Arbesmeier, Martin and Groß, Andreas and Schlegl, Thomas and Becker, Mark and Senn, Konrad and Schliekmann, Claus and Scholz, Peter and Sippl, Christian and Grill, Martin}, title = {Forschungsbericht 2011 / Hochschule f{\"u}r Angewandte Wissenschaften - Fachhochschule Regensburg}, editor = {Eckstein, Josef}, address = {Regensburg}, organization = {Hochschule f{\"u}r Angewandte Wissenschaften Regensburg}, issn = {1868-3533}, doi = {10.35096/othr/pub-732}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-7321}, language = {de} } @inproceedings{RillButzRill, author = {Rill, Daniel and Butz, Christiane and Rill, Georg}, title = {Dynamic Interaction of Heavy Duty Vehicles and Expansion Joints}, series = {Multibody Dynamics 2019, Proceedings of the 9th ECCOMAS Thematic Conference on Multibody Dynamics}, volume = {53}, booktitle = {Multibody Dynamics 2019, Proceedings of the 9th ECCOMAS Thematic Conference on Multibody Dynamics}, editor = {Kecskem{\´e}thy, Andr{\´e}s and Geu Flores, Francisco}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-030-23131-6}, doi = {10.1007/978-3-030-23132-3_56}, pages = {471 -- 478}, abstract = {The "Smart Bridge (Intelligente Br{\"u}cke)" project cluster, initiated by the German Federal Highway Research Institute (Bundesanstalt f{\"u}r Straßenwesen, BASt) and the Federal Ministry of Transport and Digital Infrastructure (BMVI), focuses on "smart" monitoring devices that allow an efficient and economic maintenance management of bridge infrastructures. Among the participating projects, the one presented herein focuses on the development of a smart expansion joint, to assess the traffic parameters on site. This is achieved by measuring velocity and weight of crossing vehicles. In reference measurements, performed with a three-axle truck and a typical tractor semi-trailer combination with five axles in total, it was shown that the interaction between the vehicle and the expansion joint is highly dynamic and depends on several factors. To get more insight into this dynamic problem, a virtual test rig was set up. Although nearly all vehicle parameters had to be estimated, the simulation results conform very well with the measurements and are robust to vehicle parameter variations. In addition, they indicate a significant influence of the expansion joint dynamic to the peak values of the measured wheel loads, in particular on higher driving velocities. By compensating the relevant dynamic effects in the measurements, a "smart" data processing algorithm makes it possible to determine the actual vehicle weights in random traffic with reliability and appropriate accuracy.}, language = {en} } @inproceedings{HacklHirschbergLexetal., author = {Hackl, Andreas and Hirschberg, Wolfgang and Lex, Cornelia and Rill, Georg}, title = {Parameterization Process of the Maxwell Model to Describe the Transient Force Behavior of a Tire}, series = {WCX 17: SAE World Congress Experience 2017}, booktitle = {WCX 17: SAE World Congress Experience 2017}, publisher = {SAE}, doi = {10.4271/2017-01-1505}, abstract = {The present technical article deals with the modeling of dynamic tire forces, which are relevant during interactions of safety relevant Advanced Driver Assistance Systems (ADAS). Special attention has been paid on simple but effective tire modeling of semi-physical type. In previous investigations, experimental validation showed that the well-known first-order Kelvin-Voigt model, described by a spring and damper element, describes good suitability around fixed operation points, but is limited for a wide working range. When aiming to run vehicle dynamics models within a frequency band of excitation up to 8 Hz, these models deliver remarkable deviations from measured tire characteristics. To overcome this limitation, a nonlinear Maxwell spring-damper element was introduced which is qualified to model the dynamic hardening of the elastomer materials of the tire. However, the advantage of a more realistic description of the transient behavior leads to a more complex parametrization process. Therefore, in the proposed article attention is paid to describe the identification process including defined maneuvers to parameterize the tire model, where the accuracy of the parameter strongly depends on the quality of the available input data from measurement. In order to study this important aspect of parameterization, the reference data from simulation of the full physical tire model FTire is applied like a "virtual measurement" of specified testing maneuvers. The procedure of simulation by means of the enhanced first order dynamics model is implemented by the semi-physical tire model TMeasy. Finally, the improvements of the extended model are discussed and an outlook for future work is given.}, language = {en} } @inproceedings{HacklHirschbergLexetal., author = {Hackl, Andreas and Hirschberg, W. and Lex, C. and Rill, Georg}, title = {Experimental validation of the Maxwell model for description of transient tyre forces}, series = {16. Internationales Stuttgarter Symposium, Automobil- und Motorentechnik}, booktitle = {16. Internationales Stuttgarter Symposium, Automobil- und Motorentechnik}, editor = {Bargende, Michael and Reuss, Hans-Christian and Wiedemann, Jochen}, publisher = {Springer}, address = {Wiesbaden}, isbn = {978-3-658-13254-5}, doi = {10.1007/978-3-658-13255-2_29}, pages = {401 -- 418}, abstract = {Modelling and simulation of safety relevant Driver Assistance Systems (DAS) and Vehicle Dynamics Controllers (VDC) which act in standard and limit situations lead to increasing accuracy demands in the description of dynamic reactions of tyre contact forces, e.g. For that purpose, first-order approaches are widely applied in this field of vehicle dynamics and handling, which originate from Schlippe \& Dietrich, were modified by Pacejka and later on refined by Rill.}, language = {en} } @inproceedings{HacklHirschbergLexetal., author = {Hackl, Andreas and Hirschberg, Wolfgang and Lex, Cornelia and Rill, Georg}, title = {Tyre Dynamics: Model Validation and Parameter Identification}, series = {Proceedings of the European Automotive Congress EAEC-ESFA 2015}, volume = {45}, booktitle = {Proceedings of the European Automotive Congress EAEC-ESFA 2015}, editor = {Andreescu, Cristian and Clenci, Adrian}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-27275-7}, doi = {10.1007/978-3-319-27276-4_20}, pages = {219 -- 232}, abstract = {The present paper deals with the experimental validation of tyre dynamics approaches as it is widely applied in tyre models for vehicle dynamics and handling. Firstly it gives a brief derivation of two modelling principles regarding the deflection velocity in the considered direction of the tyre's deformation. This is than followed by a brief description of the performed measurement procedure. From the measurements, a set of model parameters of the considered tyre, depending on different manoeuvre speeds and frequencies, is identified, where no particular fitting parameters for the tyre dynamics are needed. Based on these model parameters, the related dynamic simulations are carried out. The comparisons show that the applied first-order model describes the behaviour quite well within a certain operation range, whereas the second-order approach cannot deliver better results in spite of the longer computational time. However, for investigations within an enlarged frequency range of the steer input and at high slip angles, a more detailed model is recommended.}, language = {en} } @inproceedings{DessortChucholowskiRill, author = {Dessort, Ronnie and Chucholowski, Cornelius and Rill, Georg}, title = {Parametrical approach for modeling of tire forces and torques in TMeasy 5}, series = {Proceedings of the 16. Internationales Stuttgarter Symposium Automobil- und Motorentechnik}, booktitle = {Proceedings of the 16. Internationales Stuttgarter Symposium Automobil- und Motorentechnik}, editor = {Bargende, Michael and Reuss, Hans-Christian and Wiedemann, Jochen}, publisher = {Springer}, address = {Wiesbaden}, isbn = {978-3-658-13254-5}, pages = {435 -- 449}, abstract = {For the dynamic simulation of on-road vehicles, the model-element "tire/road" is of special importance, according to its influence on the achievable results. Sufficient description of the interaction between tire and road is one of the most challenging tasks of vehicle modeling. Two groups of tire models can be classified: handling models and structural or high-frequency models. Usually, various assumptions are made in modeling vehicles as multibody systems. Therefore, in the interest of balanced modeling, the precision of the complete vehicle model should stand in reasonable relation to the performance of the applied tire model. Handling tire models are characterized by a useful compromise between user friendliness, model complexity, and efficiency in computation time on the one hand, and precision in representation on the other hand. The present paper describes the general approach of the semi-physical tire model TMeasy for vehicle dynamics and handling simulation and its enhancement for bore torque simulation in Version TMeasy 5. A parameter fitting process realized by TESIS DYNAware and the validation of real tire behavior by simulation with DYNA4 is presented. Even with first guess parameters, the TMeasy tire model behaves in a realistic and plausible manner. Parameter estimation is intuitive and datasets from previous model versions can be easily migrated. After parameter fitting, the simulation results correlate well with both the tire test rig and full vehicle measurements. The enhancement of a three-dimensional slip calculation in the latest version does not modify the model behavior for high slip conditions, but improves the results not only for highly dynamic situations but also for low speed maneuvers such as parking.}, language = {en} } @article{HirschbergRillWeinfurter, author = {Hirschberg, W. and Rill, Georg and Weinfurter, H.}, title = {Tire model TMeasy}, series = {Vehicle System Dynamics}, volume = {45}, journal = {Vehicle System Dynamics}, number = {sup1}, publisher = {Taylor\&Francis}, doi = {10.1080/00423110701776284}, pages = {101 -- 119}, abstract = {This paper describes the semi-physical tire model TMeasy for vehicle dynamics and handling analyses, as it was applied in the 'low frequency tire models' section of the research programme tire model performance test (TMPT). Despite more or less weak testing input data, the effort for the application of TMeasy remains limited due to its consequent 'easy to use' orientation. One particular feature of TMeasy is the wide physical meaning of its smart parameter set, which allows to sustain the identification process even under uncertain conditions. After a general introduction, the modelling concept of TMeasy is compactly described in this paper. Taking the standard tire interface (STI) to multibody simulation system (MBS) software into account, the way to apply TMeasy is briefly shown. This includes three selected examples of application. The final comments of the authors on TMPT describe the experiences and earnings received during the participation in that programme.}, language = {en} } @inproceedings{ArrietaCastroWeberRill, author = {Arrieta Castro, Abel and Weber, Hans Ingo and Rill, Georg}, title = {Design an integrate vehicle control based-on hierarchical architecture for improve the performance of ground vehicles}, series = {COBEM2015 : 23rd ABCM International Congress of Mechanical Engineering, December 6-11, 2015, Rio de Janeiro, RJ, Brazi}, booktitle = {COBEM2015 : 23rd ABCM International Congress of Mechanical Engineering, December 6-11, 2015, Rio de Janeiro, RJ, Brazi}, organization = {Associa{\c{c}}{\~a}o Brasileira de Engenharia e Ci{\^e}ncias Mec{\^a}nicas}, doi = {10.20906/cps/cob-2015-1970}, language = {en} } @inproceedings{DessortChucholowskiRill, author = {Dessort, Ronnie and Chucholowski, Cornelius and Rill, Georg}, title = {Parametrical approach for modeling of tire forces and torques in TMeasy 5}, series = {16. Internationales Stuttgarter Symposium, Automobil- und Motorentechnik, Bd. 1}, booktitle = {16. Internationales Stuttgarter Symposium, Automobil- und Motorentechnik, Bd. 1}, editor = {Bargende, Michael and Reuss, Hans-Christian and Wiedemann, Jochen}, publisher = {Springer}, address = {Wiesbaden}, isbn = {978-3-658-13254-5}, doi = {10.1007/978-3-658-13255-2_31}, pages = {435 -- 449}, abstract = {For the dynamic simulation of on-road vehicles, the model-element "tire/road" is of special importance, according to its influence on the achievable results. Sufficient description of the interaction between tire and road is one of the most challenging tasks of vehicle modeling. Two groups of tire models can be classified: handling models and structural or high-frequency models. Usually, various assumptions are made in modeling vehicles as multibody systems. Therefore, in the interest of balanced modeling, the precision of the complete vehicle model should stand in reasonable relation to the performance of the applied tire model. Handling tire models are characterized by a useful compromise between user friendliness, model complexity, and efficiency in computation time on the one hand, and precision in representation on the other hand.}, language = {en} } @article{RillSchuderer, author = {Rill, Georg and Schuderer, Matthias}, title = {A Second-Order Dynamic Friction Model Compared to Commercial Stick-Slip Models}, series = {Modelling}, volume = {4}, journal = {Modelling}, number = {3}, publisher = {MDPI}, issn = {2673-3951}, doi = {10.3390/modelling4030021}, pages = {366 -- 381}, abstract = {Friction has long been an important issue in multibody dynamics. Static friction models apply appropriate regularization techniques to convert the stick inequality and the non-smooth stick-slip transition of Coulomb's approach into a continuous and smooth function of the sliding velocity. However, a regularized friction force is not able to maintain long-term stick. That is why dynamic friction models were developed in recent decades. The friction force depends herein not only on the sliding velocity but also on internal states. The probably best-known representative, the LuGre friction model, is based on a fictitious bristle but realizes a too-simple approximation. The recently published second-order dynamic friction model describes the dynamics of a fictitious bristle more accurately. It is based on a regularized friction force characteristic, which is continuous and smooth but can maintain long-term stick due to an appropriate shift in the regularization. Its performance is compared here to stick-slip friction models, developed and launched not long ago by commercial multibody software packages. The results obtained by a virtual friction test-bench and by a more practical festoon cable system are very promising. Thus, the second-order dynamic friction model may serve not only as an alternative to the LuGre model but also to commercial stick-slip models.}, language = {en} }