@article{DiermeierSindersbergerAngeleetal., author = {Diermeier, Andreas and Sindersberger, Dirk and Angele, Peter and Kujat, Richard and Monkman, Gareth J.}, title = {Sensor system for use with low intensity pulsed ultrasound}, series = {Sensor review}, volume = {39}, journal = {Sensor review}, number = {6}, publisher = {Emerald}, issn = {0260-2288}, doi = {10.1108/SR-11-2018-0304}, pages = {828 -- 834}, abstract = {Purpose Ultrasound is a well-established technology in medical science, though many of the conventional measurement systems (hydrophones and radiation force balances [RFBs]) often lack accuracy and tend to be expensive. This is a significant problem where sensors must be considered to be "disposable" because they inevitably come into contact with biological fluids and expense increases dramatically in cases where a large number of sensors in array form are required. This is inevitably the case where ultrasound is to be used for the in vitro growth stimulation of a large plurality of biological samples in tissue engineering. Traditionally only a single excitation frequency is used (typically 1.5 MHz), but future research demands a larger choice of wavelengths for which a single broadband measurement transducer is desirable. Furthermore, because of implementation conditions there can also be large discrepancies between measurements. The purpose of this paper deals with a very cost-effective alternative to expensive RFBs and hydrophones. Design/methodology/approach Utilization of cost-effective piezoelectric elements as broadband sensors. Findings Very effective results with equivalent (if not better) accuracy than expensive alternatives. Originality/value This paper concentrates on how very cost-effective piezoelectric ultrasound transducers can be implemented as sensors for ultrasound power measurements with accuracy as good, if not better than those achievable using radiation force balances or hydrophones.}, language = {en} }