@techreport{RabindranathBoeseProbstetal., author = {Rabindranath, R. and B{\"o}se, Holger and Probst, J{\"o}rn and Schlunck, G. and Mayer, Matthias and Forster, Eva and Bentz, Alexander and Shamonin (Chamonine), Mikhail and Monkman, Gareth J.}, title = {EAP mit magnetisch steuerbarer Elastizit{\"a}t zur Interaktion mit Bindegewebszellen MagElan}, address = {Regensburg}, organization = {Hochschule f{\"u}r Angewandte Wissenschaften Regensburg / Fachbereich Elektro- und Informationstechnik}, pages = {37}, language = {de} } @inproceedings{ForsterMayerRabindranathetal., author = {Forster, Eva and Mayer, Matthias and Rabindranath, R. and Bentz, Alexander and B{\"o}se, Holger and Shamonin (Chamonine), Mikhail and Monkman, Gareth J.}, title = {Surface Control Magneto-Active Polymers (MAP)}, series = {EuroEAP 2011, First international conference on Electromechanically Active Polymer (EAP) transducers \& artificial muscles, Pisa, 8-9 June}, booktitle = {EuroEAP 2011, First international conference on Electromechanically Active Polymer (EAP) transducers \& artificial muscles, Pisa, 8-9 June}, abstract = {Smart materials change their properties with external energy supply. Besides the known ferro-fluids and Magneto Rheological Fluid (MRF) also the Electro Active Polymer (EAP) and Magneto Rheological Elastomer (MRE) belong to these intelligent materials. The latest generation of magnetic elastomers represents a new class of composite materials. This consists of small magnetized particles which are sized in the micron or even nanometer range that in turn is bounded in a highly elastic rubber matrix. These materials are very often called MRE. Only recently, it has managed to develop these materials even further, so that very soft composite materials with a young?s modulus up to 10 kPa are possible. These soft polymers could be named magneto-active polymers. The combination of polymers with magnetic materials show novel and often enhanced properties. A precisely controllable young?s modulus and hardness, giant and non-homogeneous deformation behavior and rapid response to the magnetic field opens up new possibilities for various applications. Since MAP represent a very new technology, the behavior of these materials as a function of their composition and external conditions so far are not yet sufficiently understood. Therefore, some fundamental studies are necessary. In this paper, the mechanical surface properties are studied using a micro hardness meter. This work shows the possibility to control mechanical properties at the surface of MAP with new developed magnetic systems.}, language = {en} } @inproceedings{ForsterRabindranathMayeretal., author = {Forster, Eva and Rabindranath, R. and Mayer, M. and Bentz, Alexander and B{\"o}se, Holger and Shamonin (Chamonine), Mikhail and Monkman, Gareth J.}, title = {Characterization of ultra soft Magneto-Active Polymers (MAPs)}, series = {Conference proceedings / INDUCTICA 2011, Berlin, Germany, 24 - 26 May}, booktitle = {Conference proceedings / INDUCTICA 2011, Berlin, Germany, 24 - 26 May}, language = {en} } @inproceedings{MayerForsterRabindranathetal., author = {Mayer, M. and Forster, Eva and Rabindranath, R. and Bentz, Alexander and B{\"o}se, Holger and Shamonin (Chamonine), Mikhail and Monkman, Gareth J.}, title = {Highly compliant Magneto-Active Polymers (MAPs)}, series = {Actuator'11, Bremen, May 2011}, booktitle = {Actuator'11, Bremen, May 2011}, language = {en} }