@article{SchmailzlKaesbauerMartanetal., author = {Schmailzl, Anton and K{\"a}sbauer, Johannes and Martan, Jiř{\´i} and Honnerov{\´a}, Petra and Sch{\"a}fer, Felix and Fichtl, Maximilian and Lehrer, Tobias and Pruš{\´a}kov{\´a}, L. and Tesař, Jiř{\´i} and Sk{\´a}la, J. and Honner, Milan and Hierl, Stefan}, title = {Measurement of Core Temperature through Semi-Transparent Polyamide 6 using Scanner-Integrated Pyrometer in Laser Welding}, series = {International Journal of Heat and Mass Transfer}, volume = {146}, journal = {International Journal of Heat and Mass Transfer}, number = {January}, publisher = {Elsevier}, doi = {10.1016/j.ijheatmasstransfer.2019.118814}, abstract = {Predicting the core temperature during welding is an ambitious aim in many research works. In this work, a 3D-scanner with integrated pyrometer is characterized and used to measure the temperature during quasi-simultaneous laser transmission welding of polyamide 6. However, due to welding in an overlap configuration, the heat radiation emitted from the joining zone of a laser transmission weld has to pass through the upper polymer, which is itself a semi-transparent emitter. Therefore, the spectral filtering of the heat radiation in the upper polymer is taken into account by calibrating the pyrometer for the measurement task. Thermal process simulations are performed to compare the temperature field with the measured temperature signal. The absorption coefficients of the polymers are measured, in order to get precise results from the computation. The temperature signals during welding are in good agreement with the computed mean temperature inside the detection spot, located in the joining area. This is also true for varying laser power, laser beam diameter and the carbon black content in the lower polymer. Both, the computed mean temperature and the temperature signal are representing the core temperature. In order to evaluate the spatial sensitivity of the measurement system, the emitted heat radiation from both polymers is calculated on basis of the computed temperature field. Hereby it is found, that more than 90 percent of the detected heat radiation comes from the joining area, which is a crucial information for contact-free temperature measurement tasks on semi-transparent polymers.}, language = {en} } @inproceedings{MaiwaldFriesSchulzeetal., author = {Maiwald, Frederik and Fries, Fabian and Schulze, Julian and Honnerov{\´a}, Petra and Hierl, Stefan and Schmidt, Michael}, title = {Optical coherence tomography for in situ weld seam monitoring in absorber-free laser transmission welding}, series = {Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXX, 25-31 January 2025, San Francisco, California, United States}, booktitle = {Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXX, 25-31 January 2025, San Francisco, California, United States}, publisher = {SPIE}, doi = {10.1117/12.3040607}, abstract = {Optical and medical devices are frequently made of polymers and place high demands on precision, cleanliness, and reliability of the manufacturing processes used. Absorber-free laser transmission welding is well-suited for joining these devices: the energy input is contactless, no adhesives, additives, or absorbers are required, and the fiber lasers used enable precise weld seams. As the weld seam geometry is decisive for the joint strength and thus crucial for the quality of the product, the welding process is monitored in-situ using Optical Coherence Tomography (OCT). Subsequently, the weld seam geometry is identified automatically using the AI model "Segment Anything" (SAM), which performs semantic segmentation of the OCT data without requiring any training from the user. Welding tests using polyamide six indicate that the seam size is measured with an accuracy of a few hundredths of a millimeter, showing excellent agreement with microscopic images of microtome sections.}, language = {en} }