@article{SchmidtPenzkoferBachmaieretal., author = {Schmidt, Ulf and Penzkofer, Rainer and Bachmaier, Samuel and Augat, Peter}, title = {Implant Material and Design Alter Construct Stiffness in Distal Femur Locking Plate Fixation: A Pilot Study}, series = {Clinical Orthopaedics and Related Research®}, volume = {471}, journal = {Clinical Orthopaedics and Related Research®}, number = {9}, publisher = {The Association of Bone and Joint Surgeons}, doi = {10.1007/s11999-013-2867-0}, pages = {2808 -- 2814}, abstract = {BACKGROUND: Construct stiffness affects healing of bones fixed with locking plates. However, variable construct stiffness reported in the literature may be attributable to differing test configurations and direct comparisons may clarify these differences. QUESTIONS/PURPOSES: We therefore asked whether different distal femur locking plate systems and constructs will lead to different (1) axial and rotational stiffness and (2) fatigue under cyclic loading. METHODS: We investigated four plate systems for distal femur fixation (AxSOS, LCP, PERI-LOC, POLYAX) of differing designs and materials using bone substitutes in a distal femur fracture model (OTA/AO 33-A3). We created six constructs of each of the four plating systems. Stiffness under static and cyclic loading and fatigue under cyclic loading were measured. RESULTS: Mean construct stiffness under axial loading was highest for AxSOS (100.8 N/mm) followed by PERI-LOC (80.8 N/mm) and LCP (62.6 N/mm). POLYAX construct stiffness testing showed the lowest stiffness (51.7 N/mm) with 50\% stiffness of AxSOS construct testing. Mean construct stiffness under torsional loading was similar in the group of AxSOS and PERI-LOC (3.40 Nm/degree versus 3.15 Nm/degree) and in the group of LCP and POLYAX (2.63 Nm/degree versus 2.56 Nm/degree). The fourth load level of > 75,000 cycles was reached by three of six AxSOS, three of six POLYAX, and two of six PERI-LOC constructs. All others including all LCP constructs failed earlier. CONCLUSIONS: Implant design and material of new-generation distal femur locking plate systems leads to a wide range of differences in construct stiffness. CLINICAL RELEVANCE: Assuming construct stiffness affects fracture healing, these data may influence surgical decision-making in choosing an implant system.}, language = {en} } @article{MuehlingSandriesserDendorferetal., author = {M{\"u}hling, Mischa and Sandriesser, Sabrina and Dendorfer, Sebastian and Augat, Peter}, title = {Assessment of implant internal stresses under physiological femoral loading: Translation to a simplified bending load model}, series = {Journal of Biomechanics}, journal = {Journal of Biomechanics}, number = {112229}, publisher = {Elsevier}, issn = {1873-2380}, doi = {10.1016/j.jbiomech.2024.112229}, pages = {17}, abstract = {The success of surgical treatment for fractures hinges on various factors, notably accurate surgical indication. The process of developing and certifying a new osteosynthesis device is a lengthy and costly process that requires multiple cycles of review and validation. Current methods, however, often rely on predecessor standards rather than physiological loads in specific anatomical locations. This study aimed to determine actual loads experienced by an osteosynthesis plate, exemplified by a standard locking plate for the femoral shaft, utilizing finite elements analysis (FEA) and to obtain the bending moments for implant development standard tests. A protocol was developed, involving the creation and validation of a fractured femur model fixed with a locking plate, mechanical testing, and FEA. The model's validation demonstrated exceptional accuracy in predicting deformations, and the FEA revealed peak stresses in the fracture bridging zone. Results of a parametric analysis indicate that larger fracture gaps significantly impact implant mechanical behavior, potentially compromising stability. This study underscores the critical need for realistic physiological conditions in implant evaluations, providing an innovative translational approach to identify internal loads and optimize implant designs. In conclusion, this research contributes to enhancing the understanding of implant performance under physiological conditions, promoting improved designs and evaluations in fracture treatments.}, language = {en} }