@misc{EbigboMendelProbstetal., author = {Ebigbo, Alanna and Mendel, Robert and Probst, Andreas and Manzeneder, Johannes and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Palm, Christoph and Messmann, Helmut}, title = {Artificial Intelligence in Early Barrett's Cancer: The Segmentation Task}, series = {Endoscopy}, volume = {51}, journal = {Endoscopy}, number = {04}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/s-0039-1681187}, pages = {6}, abstract = {Aims: The delineation of outer margins of early Barrett's cancer can be challenging even for experienced endoscopists. Artificial intelligence (AI) could assist endoscopists faced with this task. As of date, there is very limited experience in this domain. In this study, we demonstrate the measure of overlap (Dice coefficient = D) between highly experienced Barrett endoscopists and an AI system in the delineation of cancer margins (segmentation task). Methods: An AI system with a deep convolutional neural network (CNN) was trained and tested on high-definition endoscopic images of early Barrett's cancer (n = 33) and normal Barrett's mucosa (n = 41). The reference standard for the segmentation task were the manual delineations of tumor margins by three highly experienced Barrett endoscopists. Training of the AI system included patch generation, patch augmentation and adjustment of the CNN weights. Then, the segmentation results from patch classification and thresholding of the class probabilities. Segmentation results were evaluated using the Dice coefficient (D). Results: The Dice coefficient (D) which can range between 0 (no overlap) and 1 (complete overlap) was computed only for images correctly classified by the AI-system as cancerous. At a threshold of t = 0.5, a mean value of D = 0.72 was computed. Conclusions: AI with CNN performed reasonably well in the segmentation of the tumor region in Barrett's cancer, at least when compared with expert Barrett's endoscopists. AI holds a lot of promise as a tool for better visualization of tumor margins but may need further improvement and enhancement especially in real-time settings.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @article{EbigboPalmProbstetal., author = {Ebigbo, Alanna and Palm, Christoph and Probst, Andreas and Mendel, Robert and Manzeneder, Johannes and Prinz, Friederike and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Siersema, Peter and Messmann, Helmut}, title = {A technical review of artificial intelligence as applied to gastrointestinal endoscopy: clarifying the terminology}, series = {Endoscopy International Open}, volume = {07}, journal = {Endoscopy International Open}, number = {12}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/a-1010-5705}, pages = {1616 -- 1623}, abstract = {The growing number of publications on the application of artificial intelligence (AI) in medicine underlines the enormous importance and potential of this emerging field of research. In gastrointestinal endoscopy, AI has been applied to all segments of the gastrointestinal tract most importantly in the detection and characterization of colorectal polyps. However, AI research has been published also in the stomach and esophagus for both neoplastic and non-neoplastic disorders. The various technical as well as medical aspects of AI, however, remain confusing especially for non-expert physicians. This physician-engineer co-authored review explains the basic technical aspects of AI and provides a comprehensive overview of recent publications on AI in gastrointestinal endoscopy. Finally, a basic insight is offered into understanding publications on AI in gastrointestinal endoscopy.}, subject = {Diagnose}, language = {en} } @article{PassosSouzaJrMendeletal., author = {Passos, Leandro A. and Souza Jr., Luis Antonio de and Mendel, Robert and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Palm, Christoph and Papa, Jo{\~a}o Paulo}, title = {Barrett's esophagus analysis using infinity Restricted Boltzmann Machines}, series = {Journal of Visual Communication and Image Representation}, volume = {59}, journal = {Journal of Visual Communication and Image Representation}, publisher = {Elsevier}, doi = {10.1016/j.jvcir.2019.01.043}, pages = {475 -- 485}, abstract = {The number of patients with Barret's esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett's esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} }