@article{PrantlEigenbergerReinhardetal., author = {Prantl, Lukas and Eigenberger, Andreas and Reinhard, Ruben and Siegmund, Andreas and Heumann, Kerstin and Felthaus, Oliver}, title = {Cell-Enriched Lipotransfer (CELT) Improves Tissue Regeneration and Rejuvenation without Substantial Manipulation of the Adipose Tissue Graft}, series = {Cells}, volume = {11}, journal = {Cells}, number = {19}, publisher = {MDPI}, doi = {10.3390/cells11193159}, pages = {1 -- 11}, abstract = {The good availability and the large content of adult stem cells in adipose tissue has made it one of the most interesting tissues in regenerative medicine. Although lipofilling is one of the most frequent procedures in plastic surgery, the method still struggles with high absorption rates and volume losses of up to 70\%. Therefore, many efforts have been made to optimize liposuction and to process the harvested tissue in order to increase fat graft retention. Because of their immunomodulatory properties, their cytokine secretory activity, and their differentiation potential, enrichment with adipose tissue-derived stem cells was identified as a promising tool to promote transplant survival. Here, we review the important parameters for lipofilling optimization. Finally, we present a new method for the enrichment of lipoaspirate with adipose tissue-derived stem cells and discuss the parameters that contribute to fat graft survival.}, language = {en} } @article{PrantlEigenbergerGehmertetal., author = {Prantl, Lukas and Eigenberger, Andreas and Gehmert, Sebastian and Haerteis, Silke and Aung, Thiha and Rachel, Reinhard and Jung, Ernst Michael and Felthaus, Oliver}, title = {Enhanced Resorption of Liposomal Packed Vitamin C Monitored by Ultrasound}, series = {Journal of Clinical Medicine}, volume = {9}, journal = {Journal of Clinical Medicine}, number = {6}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/jcm9061616}, pages = {1 -- 12}, abstract = {Vitamin C is an essential nutrient for humans and is involved in a plethora of health-related functions. Several studies have shown a connection between vitamin C intake and an improved resistance to infections that involves the immune system. However, the body cannot store vitamin C and both the elevated oral intake, and the intravenous application have certain disadvantages. In this study, we wanted to show a new formulation for the liposomal packaging of vitamin C. Using freeze etching electron microscopy, we show the formed liposomes. With a novel approach of post-processing procedures of real-time sonography that combines enhancement effects by contrast-like ultrasound with a transducer, we wanted to demonstrate the elevated intestinal vitamin C resorption on four participants. With the method presented in this study, it is possible to make use of the liposomal packaging of vitamin C with simple household materials and equipment for intake elevation. For the first time, we show the enhanced resorption of ingested liposomes using microbubble enhanced ultrasound imaging.}, language = {en} } @article{PrantlEigenbergerKleinetal., author = {Prantl, Lukas and Eigenberger, Andreas and Klein, Silvan and Limm, Katharina and Oefner, Peter J. and Schratzenstaller, Thomas and Felthaus, Oliver}, title = {Shear Force Processing of Lipoaspirates for Stem Cell Enrichment Does Not Affect Secretome of Human Cells Detected by Mass Spectrometry In Vitro}, series = {Plastic and Reconstructive Surgery}, volume = {146}, journal = {Plastic and Reconstructive Surgery}, number = {6}, publisher = {American Society of Plastic Surgeons}, doi = {10.1097/PRS.0000000000007343}, pages = {749e -- 758e}, abstract = {Background: Lipofilling is one of the most often performed surgical procedures in plastic and reconstructive surgery. Lipoaspirates provide a ready source of stem cells and secreted factors that contribute to neoangiogenesis and fat graft survival. However, the regulations about the enrichment of these beneficial cells and factors are ambiguous. In this study, the authors tested whether a combination of centrifugation and homogenization allowed the enrichment of viable stem cells in lipoaspirates through the selective removal of tumescent solution, blood, and released lipids without significantly affecting the cell secretome. Methods: Human lipoaspirate was harvested from six different patients using water jet-assisted liposuction. Lipoaspirate was homogenized by first centrifugation (3584 rpm for 2 minutes), shear strain (10 times intersyringe processing), and second centrifugation (3584 rpm for 2 minutes). Stem cell enrichment was shown by cell counting after stem cell isolation. Lipoaspirate from different processing steps (unprocessed, after first centrifugation, after homogenization, after second centrifugation) was incubated in serum-free cell culture medium for mass spectrometric analysis of secreted proteins. Results: Lipoaspirate homogenization leads to a significant 2.6 ± 1.75-fold enrichment attributable to volume reduction without reducing the viability of the stem cells. Protein composition of the secretome did not change significantly after tissue homogenization. Considering the enrichment effects, there were no significant differences in the protein concentration of the 83 proteins found in all processing steps. Conclusions: Stem cells can be enriched mechanically without significantly affecting the composition of secreted proteins. Shear-assisted enrichment of lipoaspirate constitutes no substantial manipulation of the cells' secretome.}, language = {en} } @article{EigenbergerFelthausSchratzenstalleretal., author = {Eigenberger, Andreas and Felthaus, Oliver and Schratzenstaller, Thomas and Haerteis, Silke and Utpatel, Kirsten and Prantl, Lukas}, title = {The Effects of Shear Force-Based Processing of Lipoaspirates on White Adipose Tissue and the Differentiation Potential of Adipose Derived Stem Cells}, series = {cells}, volume = {11}, journal = {cells}, number = {16}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/cells11162543}, pages = {13}, abstract = {Autologous lipotransfer is a promising method for tissue regeneration, because white adipose tissue contains a heterogeneous cell population, including mesenchymal stem cells, endothelial cells, immune cells, and adipocytes. In order to improve the outcome, adipose tissue can be processed before application. In this study, we investigated changes caused by mechanical processing. Lipoaspirates were processed using sedimentation, first-time centrifugation, shear-force homogenization, and second-time centrifugation. The average adipocyte size, stromal vascular cell count, and adipocyte depot size were examined histologically at every processing step. In addition, the adipose derived stem cells (ADSCs) were isolated and differentiated osteogenically and adipogenically. While homogenization causes a disruption of adipocyte depots, the shape of the remaining adipocytes is not changed. On average, these adipocytes are smaller than the depot adipocytes, they are surrounded by the ECM, and therefore mechanically more stable. The volume loss of adipocyte depots leads to a significant enrichment of stromal vascular cells such as ADSCs. However, the mechanical processing does not change the potential of the ADSCs to differentiate adipogenically or steogenically. It thus appears that mechanically processed lipoaspirates are promising for the reparation of even mechanically stressed tissue as that found in nasolabial folds. The changes resulting from the processing correspond more to a filtration of mechanically less stable components than to a manipulation of the tissue.}, language = {en} }