@inproceedings{SindersbergerPremMonkmanetal.2021, author = {Sindersberger, Dirk and Prem, Nina and Monkman, Gareth J. and Zimmermann, Klaus}, title = {Self-Sensing Electroadhesive Polymer Gripper with Magnetically Controllable Surface Geometry}, series = {Actuator 2021, International Conference and Exhibition on New Actuator Systems and Applications: GMM conference, February 17-19, 2021, online event}, booktitle = {Actuator 2021, International Conference and Exhibition on New Actuator Systems and Applications: GMM conference, February 17-19, 2021, online event}, editor = {Schlaak, Helmut}, publisher = {VDE VERLAG}, address = {Berlin; Offenbach}, isbn = {9783800754540}, doi = {10.1002/macp.201800222}, pages = {318 -- 320}, year = {2021}, abstract = {Compared to conventional end effectors, electro-adhesive grippers enable the handling of sensitive, soft or air-permeable materials [1]. The prehension force is based on a strong electric field generated by electrodes resulting in a polarisation of the dielectric and the generation of mirror charges in the workpiece. When the electrode supply voltage is deactivated, the electric field drops,but an electrostatic field remains due to remanent polarisation of the dielectric. The residual charge on the gripper surface reduces only slowly and in combination with other influencing factors can prevent the workpieces from being ejected temporarily or completely. In this work a solution to this problem is presented by means of gripper surface deforming caused by the applicat ion of a magnetic field to a magneto- active polymer (MAP) actuator. The in-creased distance between the workpiece and the dielectric enables precise and controlled ejection. In addition to compliance and deformability, the employment of soft smart materials enables the integration of self-sens-ing mechanisms for the measurement of surface deformation. The embedding of electrically conductive flexible electrodes within the soft silicone dielectric sup port such movements and serves as the n ecessary electrodes for electroadhesion. Since the implementation of the end effectoris based entirely on soft materials, the self-sensing magnetically controllable electroadhesive gripper (SMEG) can be produced in a shape deposition manufacturing (SDM) process [2], [3] and is highly applicable to the field of soft robotics.}, language = {de} } @article{SindersbergerPremMonkman, author = {Sindersberger, Dirk and Prem, Nina and Monkman, Gareth J.}, title = {Self-assembling structure formation in low-density magnetoactive polymers}, series = {Journal of Applied Polymer Science}, volume = {137}, journal = {Journal of Applied Polymer Science}, number = {3}, publisher = {Wiley}, doi = {10.1002/app.48291}, abstract = {The formation of microstructures in magnetoactive polymers (MAPs) is a recently discovered phenomenon found only with very low filler particle concentrations (less than 3 wt \%). Due to the degassing process, filler particles collect around an ascending bubble, which dissolves at a certain point leaving particulate rings within the matrix. The formation of toroidal microstructures commences as filler concentration approaches 1 wt \%. The development of coherent parallel aligned rings with a compact order continues as particle concentrations increase toward 2 wt \%. Between 2 and 3 wt \% capillary doublets develop, while mass percentages higher than 3\% result in increasing entropy as the random order of particle agglomeration found in higher concentration MAP dominates. Self-structured samples of different filler material and concentrations between 1 and 3 wt \% have been investigated using X-ray tomography, where the emerging structures can be observed and visualized. The ring structures resulting from this research represent microinductivities which can be fabricated in a targeted manner, thus enabling new applications in the high-frequency radio field. Furthermore, these anisotropic, but well-organized, structures have magnetic field-dependent implications for optical, thermal, acoustic, and medical applications.}, language = {en} } @article{SindersbergerDiermeierPremetal., author = {Sindersberger, Dirk and Diermeier, Andreas and Prem, Nina and Monkman, Gareth J.}, title = {Printing of hybrid magneto active polymers with 6 degrees of freedom}, series = {Materials today communications}, volume = {15}, journal = {Materials today communications}, number = {June}, publisher = {Elsevier}, doi = {10.1016/j.mtcomm.2018.02.032}, pages = {269 -- 274}, abstract = {3D printing techniques offer a versatile method for the fabrication and structuring of magnetoactive polymer (MAP) components and devices for research prototype development. MAP materials enjoy an advantage in that the particulate content may be manipulated by external magnetic fields during the forming and curing processes. Controlled particle diffusion within the polymer matrix, by means of external fields applied during the printing process, influences a further three spatial dimensions. This permits control of the spatial particle concentration and makes free displacement of particle accumulations possible during the crosslinking phase. Particles which are susceptible to electric or magnetic fields can thereby be shifted into regions previously free of particles. The additional 3 graded dispersion axes effectively results in what can be described as 6 degrees of freedom (6DOF) printing. Electrically conductive polymers combined with non-conductive areas, provide an additional benefit for the production of complex hybrid structures. This may be augmented by the combination of magnetically active thermoplastics as inelastic structural components together with mechanically deformable elastomers. The combination of all fabrication methods in one hybrid printing process makes the production of complex sensor and actuator systems in one manufacturing sequence possible. This far exceeds the capabilities of conventional casting and machining operations and opens new possibilities for the fabrication of soft material elements.}, language = {en} } @article{PremChavezVegaBoehmetal., author = {Prem, Nina and Chavez Vega, Jhohan Harvey and B{\"o}hm, Valter and Sindersberger, Dirk and Monkman, Gareth J. and Zimmermann, Klaus}, title = {Properties of Polydimethylsiloxane and Magnetoactive Polymers with Electroconductive Particles}, series = {Macromolecular Chemistry and Physics}, volume = {219}, journal = {Macromolecular Chemistry and Physics}, number = {18}, publisher = {Wiley}, doi = {10.1002/macp.201800222}, abstract = {Magnetoactive polymers are intelligent materials whose mechanical and electrical characteristics are reversibly influenced by external magnetic stimuli. They consist of a highly elastic polymer matrix in which magnetically soft and/or hard particles are distributed by means of special fabrication processes. In addition to ferromagnetic particles such as carbonyl iron powder, electrically conductive particles may also be embedded into the polymer matrix. After characterizing a range of compounds, this work focuses on a comparison of the electrical properties and the suitability of various materials for applications, with particular emphasis on integration into 3D and 6D printing processes. 6D printing is based on the selective positioning of particles in a 3D polymer matrix with a further three degrees of freedom for a graduated dispersion of the particles at certain points and in desired directions. The aim is therefore to ensure that the polymers containing electroconductive tracks have the best possible electrical properties, that is, low resistivity but are still capable of being printed. A comparison between the traditionally used compounds containing graphite and carbon black is made for the first time. This latter is found to be greatly superior both in terms of electrical conductivity and applicability to 3D printing and 6D printing.}, language = {en} } @article{ZimmermannBoehmBeckerTIetal., author = {Zimmermann, Klaus and B{\"o}hm, Valter and Becker T.I., and Chavez Vega, Jhohan Harvey and Kaufhold, Tobias and Monkman, Gareth J. and Sindersberger, Dirk and Diermeier, Andreas and Prem, Nina}, title = {Mechanical Characterization of the Field-Dependent Properties of Magnetoactive Polymers and Integrated Electrets for their Application in Soft Robotics}, series = {International Scientific Journal "Problems of Mechanics"}, volume = {69}, journal = {International Scientific Journal "Problems of Mechanics"}, number = {4}, issn = {1512-0740}, language = {en} } @article{ZimmermannChavezVegaBeckeretal., author = {Zimmermann, Klaus and Chavez Vega, Jhohan Harvey and Becker, Tatiana I. and Witte, Hartmut and Schilling, Cornelius and K{\"o}hring, Sebastian and B{\"o}hm, Valter and Monkman, Gareth J. and Prem, Nina and Sindersberger, Dirk and Lutz, I. I. and Merker, Lukas}, title = {An approach to a form-adaptive compliant gripper element based on magneto-sensitive elastomers with a bioinspired sensorized surface}, series = {Problems of Mechanics}, volume = {75}, journal = {Problems of Mechanics}, number = {2}, publisher = {Georgian Technical University}, address = {Tbilisi}, issn = {1512-0740}, pages = {23 -- 38}, language = {en} } @misc{BroserFalterŁawrowskietal., author = {Broser, Christian and Falter, Thomas and Ławrowski, Robert Damian and Altenbuchner, Amelie and V{\"o}gele, Daniel and Koss, Claus and Schlamp, Matthias and Dunnweber, Jan and Steffens, Oliver and Heckner, Markus and Jaritz, Sabine and Schiegl, Thomas and Corsten, Sabine and Lauer, Norina and Guertler, Katherine and Koenig, Eric and Haug, Sonja and Huber, Dominik and Birkenmaier, Clemens and Krenkel, Lars and Wagner, Thomas and Justus, Xenia and Saßmannshausen, Sean Patrick and Kleine, Nadine and Weber, Karsten and Braun, Carina N. and Giacoppo, Giuliano and Heinrich, Michael and Just, Tobias and Schreck, Thomas and Schnabl, Andreas and Gilmore, Amador T{\´e}ran and Roeslin, Samuel and Schmid, Sandra and Wellnitz, Felix and Malz, Sebastian and Maurial, Andreas and Hauser, Florian and Mottok, J{\"u}rgen and Klettke, Meike and Scherzinger, Stefanie and St{\"o}rl, Uta and Heckner, Markus and Bazo, Alexander and Wolff, Christian and Kopper, Andreas and Westner, Markus and Pongratz, Christian and Ehrlich, Ingo and Briem, Ulrich and Hederer, Sebastian and Wagner, Marcus and Schillinger, Moritz and G{\"o}rlach, Julien and Hierl, Stefan and Siegl, Marco and Langer, Christoph and Hausladen, Matthias and Schreiner, Rupert and Haslbeck, Matthias and Kreuzer, Reinhard and Br{\"u}ckl, Oliver and Dawoud, Belal and Rabl, Hans-Peter and Gamisch, Bernd and Schmidt, Ottfried and Heberl, Michael and G{\"a}nsbauer, Bianca and Bick, Werner and Ellermeier, Andreas and Monkman, Gareth J. and Prem, Nina and Sindersberger, Dirk and Tschurtschenthaler, Karl and Aurbach, Maximilian and Dendorfer, Sebastian and Betz, Michael A. and Szecsey, Tamara and Mauerer, Wolfgang and Murr, Florian}, title = {Forschung 2018}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-9818209-5-9}, doi = {10.35096/othr/pub-1382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13826}, pages = {98}, subject = {Forschung}, language = {de} } @misc{ChavezVegaBoehmScharffetal., author = {Chavez Vega, Jhohan Harvey and B{\"o}hm, Valter and Scharff, Moritz and Prem, Nina and Monkman, Gareth J. and Becker, Tatiana I. and G{\"u}nther, L. and Alencastre, Jorge H. and Grieseler, R. and Zimmermann, Klaus}, title = {Magneto-active elastomer as viscoelastic foundation material for artificial tactile sensors with tuneable properties}, series = {Book of Abstracts of the 16th German Ferrofluid Workshop, Braunschweig, 18.-20.07.2018}, journal = {Book of Abstracts of the 16th German Ferrofluid Workshop, Braunschweig, 18.-20.07.2018}, pages = {16 -- 17}, language = {en} }