@inproceedings{LindnerBerndtTschurtschenthaletal., author = {Lindner, Matthias G. and Berndt, Dominik and Tschurtschenthal, Karl and Ehrlich, Ingo and Jungbauer, Bastian and Schreiner, Rupert and Pipa, Andrei V. and Hink, R{\"u}diger and Foest, R{\"u}diger and Brandenburg, Ronny and Neuwirth, Daniel and Karpen, Norbert and Bonaccurso, Elmar and Weichwald, Robert and Max, Alexander and Caspari, Ralf}, title = {Aircraft Icing Mitigation by DBD-based Micro Plasma Actuators}, series = {AIAA AVIATION 2020 FORUM: June 15-19, 2020}, booktitle = {AIAA AVIATION 2020 FORUM: June 15-19, 2020}, doi = {10.2514/6.2020-3243}, abstract = {We present the application of plasma actuators as a technology for ice prevention at airfoils. The miniaturized dielectric barrier discharge (DBD) plasma actuators (PA) were fabricated by means of microelectromechanical systems (MEMS). We elucidate how to make the actuator samples scalable and applicable to any desired shape by the use of flexible inorganic zirconia substrates. For this purpose, we applied our developed embedding method to integrate the micro actuators in modern carbon/glass fiber reinforced polymer (CFRP/GFRP) materials. Next, the embedded actuator samples were mounted on a mechanical air profile-like fixture and placed in the icing wind tunnel iCORE. The samples were tested in rime ice conditions at temperatures of -15 to -20° C and air speeds up to 30 m/s. Unlike other groups we used a thin film zirconia substrate as dielectric for the plasma actuator. Due to the low substrate thickness of just 150 µm, an operating voltage of 2 kVRMS is already sufficient enough for a stable plasma formation. The experiments show that the operated actuator was able to prevent the ice formation and first indications of a De-icing function were also found. Hence, we show that it is feasible to realize an anti-icing system with zirconia-based plasma actuators operated at lower voltages compared to conventional ones.}, language = {en} }