@inproceedings{NavitskiSerbunMuelleretal., author = {Navitski, Aliaksandr and Serbun, Pavel and M{\"u}ller, G{\"u}ntner and Schreiner, Rupert and Dams, Florian}, title = {Efficient and reliable field emission from silicon tip arrays for miniaturized electron sources}, series = {2011 24th International Vacuum Nanoelectronics Conference ; 18-22 July 2011 Wuppertal}, booktitle = {2011 24th International Vacuum Nanoelectronics Conference ; 18-22 July 2011 Wuppertal}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {978-3-00-035081-8}, issn = {2380-6311}, pages = {71 -- 72}, abstract = {Silicon-based cathodes with precisely aligned field emitter arrays (FEA) applicable for miniaturized electron sources were successfully developed and fabricated. The cathode chips contain about 3×105 Si tips/cm2 in a triangular array with a tip height of 2.5 μm, tip radius of 20 nm, and lateral distance between tips of 20 μm. Amazingly homogeneous and well-aligned field emission (FE) from all tips (i.e. 100\% efficiency) and maximum stable currents of typically 0.1 μA for p- and 0.6 μA for n-type Si were reproducibly achieved. Current-voltage characteristics of p-type Si tips exhibit the expected saturation at around 10 nA due to limited supply of electrons from a depletion layer, while the n-type Si tips show the usual FN behaviour. Additional coating of the Si tips with a 10 nm Au layer resulted in at least 5 times higher average FE current levels i.e. typically 3 μA but lead, however, to a 30\% increase of the onset voltage.}, language = {en} } @inproceedings{SchreinerPrommesbergerLangeretal., author = {Schreiner, Rupert and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Serbun, Pavel and Bornmann, Benjamin and Navitski, Aliaksandr and M{\"u}ller, G{\"u}ntner}, title = {Highly uniform and stable electron field emission from B-doped Si-tip arrays for applications in integrated vacuum microelectronic devices}, series = {25th International Vacuum Nanoelectronics Conference (IVNC) - Jeju, Korea (South), 09.07. - 13.07.2012}, booktitle = {25th International Vacuum Nanoelectronics Conference (IVNC) - Jeju, Korea (South), 09.07. - 13.07.2012}, publisher = {IEEE}, address = {Piscataway, NJ.}, isbn = {978-1-4673-1984-3}, issn = {2380-6311}, doi = {10.1109/IVNC.2012.6316857}, pages = {1 -- 2}, abstract = {In order to improve the uniformity and field emission stability of p-type silicon tip arrays for pulsed sensor applications, we have systematically studied the influence of the fabrication parameters on the tip shape and the specific operating conditions. Based on detailed design calculations of the field enhancement, we have fabricated a series of hexagonal arrays of B-doped Si-tips in a triangular arrangement, each containing a different number of tips (91, 575 and 1300) of 1 μm height, 20 nm apex radius, and 20 μm pitch. The field emission properties of both individual tips and complete arrays were investigated with by field emission scanning microscopy. The current plateaus of these tips typically occur at about 10 nA and 60 V/μm field level. In this carrier depletion range, single tips provide the highest current stability (<; 4\%) and optical current switching ratios of ~2.5. Rather homogeneous emission of the tip arrays leads to an almost linear scaling of the saturation current (2 nA/tip) and to a much improved current stability (<; 1\%) measured over 1 hour.}, language = {en} } @inproceedings{SerbunNavitskiMuelleretal., author = {Serbun, Pavel and Navitski, Aliaksandr and M{\"u}ller, G{\"u}ntner and Schreiner, Rupert and Prommesberger, Christian and Langer, Christoph and Dams, Florian}, title = {Scaling of the field emission current from B-doped Si-tip arrays}, series = {25th International Vacuum Nanoelectronics Conference (IVNC) ; Jeju, Korea (South), 09.07.2012 - 13.07.2012}, booktitle = {25th International Vacuum Nanoelectronics Conference (IVNC) ; Jeju, Korea (South), 09.07.2012 - 13.07.2012}, publisher = {IEEE}, address = {Piscataway, N.J.}, isbn = {978-1-4673-1984-3}, issn = {2380-6311}, doi = {10.1109/IVNC.2012.6316965}, pages = {1 -- 2}, abstract = {We have fabricated a test chip with various hexagonal arrays of B-doped Si tips (height ~ 3 μm, apex radius <; 30 nm, number 1-4447, resistivity 4 Ωcm, 100 orientation) in triangular arrangement (pitch 10 μm, density 1.16×10 6 cm -2 ) in order to systematically investigate the field emission current scaling with the number N of tips. Regulated voltage scans for 1 nA revealed rather efficient emission from nearly all tips of the arrays at an average field of 15 V/μm. The expected current plateau was always obtained at fields around 20 V/μm, but its width strongly increased with N. In this carrier depletion range, the single tip provided a much higher stability (<; 5\%) of the current (2-3 nA) than at lower (>; 50 \%) and higher currents (>; 30\%). Integral current measurements of the hexagonal arrays resulted in a statistically improved current stability (<; 1\%) but only a weak increase of the total current with N 0.28 yet. These results will be discussed with respect to the remaining inhomogeneity of the tips.}, language = {en} }