@inproceedings{SerbunNavitskiMuelleretal., author = {Serbun, Pavel and Navitski, Aliaksandr and M{\"u}ller, G{\"u}ntner and Schreiner, Rupert and Prommesberger, Christian and Langer, Christoph and Dams, Florian}, title = {Scaling of the field emission current from B-doped Si-tip arrays}, series = {25th International Vacuum Nanoelectronics Conference (IVNC) ; Jeju, Korea (South), 09.07.2012 - 13.07.2012}, booktitle = {25th International Vacuum Nanoelectronics Conference (IVNC) ; Jeju, Korea (South), 09.07.2012 - 13.07.2012}, publisher = {IEEE}, address = {Piscataway, N.J.}, isbn = {978-1-4673-1984-3}, issn = {2380-6311}, doi = {10.1109/IVNC.2012.6316965}, pages = {1 -- 2}, abstract = {We have fabricated a test chip with various hexagonal arrays of B-doped Si tips (height ~ 3 μm, apex radius <; 30 nm, number 1-4447, resistivity 4 Ωcm, 100 orientation) in triangular arrangement (pitch 10 μm, density 1.16×10 6 cm -2 ) in order to systematically investigate the field emission current scaling with the number N of tips. Regulated voltage scans for 1 nA revealed rather efficient emission from nearly all tips of the arrays at an average field of 15 V/μm. The expected current plateau was always obtained at fields around 20 V/μm, but its width strongly increased with N. In this carrier depletion range, the single tip provided a much higher stability (<; 5\%) of the current (2-3 nA) than at lower (>; 50 \%) and higher currents (>; 30\%). Integral current measurements of the hexagonal arrays resulted in a statistically improved current stability (<; 1\%) but only a weak increase of the total current with N 0.28 yet. These results will be discussed with respect to the remaining inhomogeneity of the tips.}, language = {en} } @article{DamsNavitskiPrommesbergeretal., author = {Dams, Florian and Navitski, Aliaksandr and Prommesberger, Christian and Serbun, Pavel and Langer, Christoph and M{\"u}ller, G{\"u}nter and Schreiner, Rupert}, title = {Homogeneous Field Emission Cathodes With Precisely Adjustable Geometry Fabricated by Silicon Technology}, series = {IEEE Transactions on Electron Devices}, volume = {59}, journal = {IEEE Transactions on Electron Devices}, number = {10}, publisher = {IEEE}, issn = {0018-9383}, doi = {10.1109/TED.2012.2206598}, pages = {2832 -- 2837}, abstract = {Silicon-based cathodes with precisely aligned field emitter arrays of sharp tips applicable for miniaturized electron sources were successfully fabricated and characterized. This was made possible by an improved fabrication process using wet thermal oxidation, wet etching, and reactive-ion etching steps with adjustable anisotropy. As substrate materials, both p-doped silicon and n-doped silicon were used. The cathode chips contain about 3 × 10 5 Si tips/cm 2 in a triangular array with tip heights of 2.5 μm, tip radii of less than 30 nm, and spacing of 20 μm. Well-aligned field emission (FE) and excellent homogeneity from all tips (i.e., 100\% efficiency) and maximum stable currents of typically 0.1 μA (0.6 μA) for p (n)-type Si were reproducibly achieved. The current-voltage characteristics of the p-Si tips exhibit the expected saturation at around 10 nA with around ten times better current stability, whereas the n-Si tips show the usual Fowler-Nordheim behavior. Additional coating of the Si tips with 5-nm Cr and 10-nm Au layers resulted in improved stability and at least five times higher average FE current limits (about 3 μA) at about 30\% higher operation voltage.}, language = {en} }